DataSheet
FEATURES
OperatingRFfrequency30MHzto2GHz
LOinputat2×fLO60MHzto4GHz
InputIP3:31dBmat900MHzInputIP2:62dBmat900MHzInputP1dB:13dBmat900MHzNoisefigure(NF)
12.0dBat140MHz14.7dBat900MHzVoltageconversiongain>4dBQuadraturedemodulationuracyPhaseuracy~0.4°Amplitudebalance~0.05dBDemodulationbandwidth~240MHzBasebandI/Qdrive2Vp-pinto200ΩSingle5Vsupply
APPLICATIONS
QAM/QPSKRF/IFdemodulatorsW-CDMA/CDMA/CDMA2000/GSMMicrowavepoint-to-(multi)pointradiosBroadbandwirelessandWiMAXBroadbandCATVs
GENERALDESCRIPTION
TheADL5387isabroadbandquadratureI/QdemodulatorthatcoversanRF/IFinputfrequencyrangefrom30MHzto2GHz.WithaNF=13.2dB,IP1dB=12.7dBm,andIIP3=32dBmat450MHz,theADL5387demodulatoroffersoutstandingdynamicrangesuitableforthedemandinginfrastructuredirect-conversionrequirements.ThedifferentialRF/IFinputsprovideawellbehavedbroadbandinputimpedanceof50Ωandarebestdrivenfroma1:1balunforoptimumperformance.
Ultrabroadbandoperationisachievedwithadivide-by-2methodforlocaloscillator(LO)quadraturegeneration.OverawiderangeofLOlevels,excellentdemodulationuracyisachievedwithamplitudeandphasebalances~0.05dBand~0.4°,respectively.Thedemodulatedin-phase(I)andquadrature(Q)differentialoutputsarefullybufferedandprovideavoltageconversiongainof>4dB.Thebufferedbasebandoutputsarecapableofdrivinga2Vp-pdifferentialsignalinto200Ω.
30MHzto2GHzQuadratureDemodulator
ADL5387
FUNCTIONALBLOCKDIAGRAM
242322
CMRFCMRFRFIP1VPA
2120RFINCMRF
19
VPXVPB18
2COM
VPB17
3BIAS4VPL
DIVIDE-BY-2PHASESPLITTER
QHI16QLO15
5VPL
IHI14
06764-001
6VPLCML
7 LOIP8 LOIN9 CML10 CML11 ILO13COM 12 Figure1. Thefullybalanceddesignminimizeseffectsfromsecond-orderdistortion.TheleakagefromtheLOporttotheRFportis<−70dBc.Differentialdc-offsetsattheIandQoutputsare<10mV.BothofthesefactorscontributetotheexcellentIIP2specifications>60dBm. TheADL5387operatesoffasingle4.75Vto5.25Vsupply.ThesupplycurrentisadjustablewithanexternalresistorfromtheBIASpintoground. TheADL5387isfabricatedusingtheAnalogDevices,Inc.,advancedsilicon-germaniumbipolarprocessandisavailableina24-leadexposedpaddleLFCSP. Rev.C DocumentFeedback InformationfurnishedbyAnalogDevicesisbelievedtobeurateandreliable.However,no responsibilityisassumedbyAnalogDevicesforitsuse,norforanyinfringementsofpatentsorother rightsofthirdpartiesthatmayresultfromitsuse.Specificationssubjecttochangewithoutnotice.No licenseisgrantedbyimplicationorotherwiseunderanypatentorpatentrightsofAnalogDevices. Trademarksandregisteredtrademarksarethepropertyoftheirrespectiveowners. OneTechnologyWay,
P.O.Box9106,Norwood,MA02062-9106,
U.S.A. Tel:781.329.4700©2007–2016AnalogDevices,Inc.Allrightsreserved. TechnicalSupport ADL5387*PRODUCTPAGEQUICKLINKS LastContentUpdate:02/23/2017 COMPARABLEPARTS Viewaparametricsearchparableparts. EVALUATIONKITS •ADL5387EvaluationBoard DOCUMENTATION ApplicationNotes•AN-924:DigitalQuadratureModulatorGainDataSheet•ADL5387:30MHzto2GHzQuadratureDemodulatorData Sheet TOOLSANDSIMULATIONS •ADIsimPLL™•ADIsimRF REFERENCEDESIGNS •CN0245•CN0248 REFERENCEMATERIALS ProductSelectionGuide•RFSourceBooklet DESIGNRESOURCES •ADL5387MaterialDeclaration•PCN-PDNInformation•QualityAndReliability•SymbolsandFootprints DISCUSSIONS ViewallADL5387EngineerZoneDiscussions. SAMPLEANDBUY Visittheproductpagetoseepricingoptions. TECHNICALSUPPORT Submitatechnicalquestionorfindyourregionalsupportnumber. DOCUMENTFEEDBACK Submitfeedbackforthisdatasheet. ThispageisdynamicallygeneratedbyAnalogDevices,Inc.,andinsertedintothisdatasheet.Adynamicchangetothecontentonthispagewillnottriggerachangetoeithertherevisionnumberorthecontentoftheproductdatasheet.Thisdynamicpagemaybefrequentlymodified. ADL5387 TABLEOFCONTENTS Features
4 GHz 0.03
2 GHz −10−60 dB+6dBm 4.3 3.2 2400.40.1±5VPOS−2.840212 dB dB MHzDegreesdBmVVMHzVp-pmA 4.75180157 5.25VmAmA 4.51269310.10.3 4.7136731−100 −950.050.2−39 12.014.4 dBdBmdBmdBmdBDegrees dBdBmdBmdBmdBm dBcdBDegreesdBm dBdB Rev.C|Page3of27 ADL5387 ParameterDYNAMICPERFORMANCEatRF=450MHz ConversionGainInputP1dB(IP1dB)Second-OrderInputIntercept(IIP2)Third-OrderInputIntercept(IIP3)LOtoRF RFtoLOI/QMagnitudeImbalanceI/QPhaseImbalanceLOtoI/Q NoiseFigureDYNAMICPERFORMANCEatRF=900MHz ConversionGainInputP1dB(IP1dB)Second-OrderInputIntercept(IIP2)Third-OrderInputIntercept(IIP3)LOtoRF RFtoLOI/QMagnitudeImbalanceI/QPhaseImbalanceLOtoI/Q NoiseFigureNoiseFigureunderBlockingConditionsDYNAMICPERFORMANCEatRF=1900MHzConversionGainInputP1dB(IP1dB)Second-OrderInputIntercept(IIP2)Third-OrderInputIntercept(IIP3)LOtoRF RFtoLOI/QMagnitudeImbalanceI/QPhaseImbalanceLOtoI/Q NoiseFigureNoiseFigureunderBlockingConditions 1SeeFigure64forlocationsofL1,L2,C10,andC11. Condition −5dBmeachinputtone−5dBmeachinputtoneRFIN,RFIPterminatedin50Ω,1xLOappearingattheRFportLOIN,LOIPterminatedin50Ω RFIN,RFIPterminatedin50Ω,1xLOappearingattheBBport −5dBmeachinputtone−5dBmeachinputtoneRFIN,RFIPterminatedin50Ω,1xLOappearingattheRFportLOIN,LOIPterminatedin50Ω RFIN,RFIPterminatedin50Ω,1XLOappearingattheBBportWitha−5dBminterferer5MHzaway −5dBmeachinputtone−5dBmeachinputtoneRFIN,RFIPterminatedin50Ω,1xLOappearingattheRFportLOIN,LOIPterminatedin50Ω RFIN,RFIPterminatedin50Ω,1xLOappearingattheBBportWitha−5dBminterferer5MHzaway MinTyp 4.412.769.232.8−87 −900.050.6−38 13.2 4.312.861.731.2−79 −880.050.2−41 14.715.8 3.812.859.827.4−75 −700.050.3−43 16.518.7 DataSheet MaxUnit dBdBmdBmdBmdBm dBcdBDegreesdBm dB dBdBmdBmdBmdBm dBcdBDegreesdBm dBdB dBdBmdBmdBmdBm dBcdBDegreesdBm dBdB Rev.C|Page4of27 DataSheet ABSOLUTEMAXIMUMRATINGS Table2.Parameter Rating SupplyVoltageVPOS1,VPOS2,VPOS3LOInputPowerRF/IFInputPowerInternalMaximumPowerDissipationθJAMaximumJunctionTemperatureOperatingTemperatureRangeStorageTemperatureRange 5.5V13dBm(re:50Ω)15dBm(re:50Ω)1100mW54°C/W150°C−40°Cto+85°C−65°Cto+125°
C StressesatorabovethoselistedunderAbsoluteMaximumRatingsmaycausepermanentdamagetotheproduct.Thisisastressratingonly;functionaloperationoftheproductattheseoranyotherconditionsabovethoseindicatedintheoperationalsectionofthisspecificationisnotimplied.Operationbeyondthemaximumoperatingconditionsforextendedperiodsmayaffectproductreliability. ESDCAUTION ADL5387 Rev.C|Page5of27 ADL5387PINCONFIGURATIONANDFUNCTIONDESCRIPTIONS 242322 CMRFCMRFRFIP1VPA 2120RFINCMRF 19 VPXVPB18 2COM VPB17 3BIAS4VPL ADL5387 TOPVIEW(NottoScale) QHI16QLO15 5VPL IHI14 6VPLCML7 LOIP8 LOIN9 CML10 CML11 ILO13COM 12 NOTES1.CONNECTTHEEXPOSEDPADDLETOA LOWIMPEDANCEGROUNDPLANE. Figure2.PinConfiguration 06764-002 DataSheet Table3.PinFunctionDescriptions PinNo. Mnemonic Description 1,4to6,17to19 VPA,VPL,VPB,VPXSupply.PositivesupplyforLO,IF,biasingandbasebandsections,respectively.Thesepinsshouldbedecoupledtoboardgroundusingappropriatesizedcapacitors. 2,7,10to12,COM,CML,CMRF20,23,24 Ground.Connecttoalowimpedancegroundplane.
3 BIAS BiasControl.AresistorcanbeconnectedbetweenBIASandCOMtoreducethemixercorecurrent.Thedefaultsettingforthispinisopen. 8,
9 LOIP,LOIN LocalOscillator.ExternalLOinputisat2xLOfrequency.Asingle-endedLOat0dBmcanbeapplied througha1000pFcapacitortoLOIP.LOINshouldbeac-grounded,alsousinga1000pF.Theseinputs canalsobedrivendifferentiallythroughabalun(mendedbalunisM/A-COMETC1-1-13). 13to16 ILO,IHI,QLO,QHI I-ChannelandQ-ChannelMixerBasebandOutputs.Theseoutputshavea50Ωdifferentialoutputimpedance(25Ωperpin).ThebiaslevelonthesepinsisequaltoVPOS−2.8V.Eachoutputpaircanswing2Vp-p(differential)intoaloadof200Ω.Output3dBbandwidthis240MHz. 21,22 RFIN,RFIP RFInput.Asingle-ended50ΩsignalcanbeappliedtotheRFinputsthrougha1:1balun(mendedbalunisM/A-COMETC1-1-13).Ground-referencedinductorsmustalsobeconnectedtoRFIPandRFIN(mendedvalues=120nH). EP ExposedPaddle.Connecttoalowimpedancegroundplane. Rev.C|Page6of27 DataSheet ADL5387 TYPICALPERFORMANCECHARACTERISTICS VS=5V,TA=25°
C,LOdrivelevel=0dBm,RBIAS=open,unlessotherwisenoted. 20TA=–40°CTA=+25°CTA=+85°
C INPUTP1dB 80 IIP270 1560 06764-003 IIP2,IIP3(dBm) GAIN(dB),IP1dB(dBm) 10GAIN
5 00200400600800100012001400160018002000RFFREQUENCY(MHz) Figure3.ConversionGainandInput1dBCompressionPoint(IP1dB)vs.RFFrequency 20TA=–40°CTA=+25°CTA=+85°C 15INPUTP1dB 10 GAIN5 GAIN(dB),IP1dB(dBm) 02030405060708090100110120130FREQUENCY(MHz) Figure4.ConversionGainandInput1dBCompressionPoint(IP1dB)vs.RFFrequency(LowFrequencyRange) 80 ICHANNEL TA=+85°
C QCHANNEL TA=+25°
C 70 TA=–40°
C 60INPUTIP2 50 IIP2,IIP3(dBm) 40 30 20 INPUTIP3(IANDQCHANNELS) 100200400600800100012001400160018002000RFFREQUENCY(MHz) Figure5.InputThird-OrderIntercept(IIP3)andInputSecond-OrderInterceptPoint(IIP2)vs.RFFrequency 06764-004 MAGNITUDEERROR(dB) 06764-104 MAGNITUDEERROR(dB) 50 40IIP3 30 20 TA=–40°
C TA=+25°
C 10TA=+85°
C 2030405060708090100110120130 FREQUENCY(MHz) 06764-106 Figure6.InputThird-OrderIntercept(IIP3)andInputSecond-OrderInterceptPoint(IIP2)vs.RFFrequency(LowFrequencyRange) 2.0TA=–40°C 1.5TTAA==++8255°°CC1.0 0.5
0 –0.5 –1.0 –1.5 –2.00 200400600800100012001400160018002000RFFREQUENCY(MHz) 06764-005 Figure7.I/QGainMismatchvs.RFFrequency 2.0 TA=–40°
C TA=+25°
C 1.5 TA=+85°
C 1.0 0.5
0 –0.5 –1.0 –1.5 –2.02030405060708090100110120130FREQUENCY(MHz) Figure8.I/QGainMismatchvs.RFFrequency(LowFrequencyRange) 06764-108 Rev.C|Page7of27 ADL5387 QUADRATUREPHASEERROR(Degrees) 4TA=–40°C 3TTAA==++8255°°CC210–1–2–3–4 0200400600800100012001400160018002000RFFREQUENCY(MHz) Figure9.I/QQuadraturePhaseErrorvs.RFFrequency QUADRATUREPHASEERROR(Degrees) 4TA=–40°CTA=+25°C 3TA=+85°C 2 1
0 –1 –
2 –3 –42030405060708090100110120130FREQUENCY(MHz) Figure10.I/QQuadraturePhaseErrorvs.RFFrequency(LowFrequencyRange) 5NORMALIZEDTO1MHz
0 –
5 –10 –15 –20 –25 –301 10 100 BBFREQUENCY(MHz) 1000 Figure11.NormalizedI/QBasebandFrequencyResponse BBRESPONSE(dB) 06764-006 IIP3(dBm)ANDNOISEFIGURE(dB) 06764-110 06764-008 GAIN(dB),INPUTP1dB(dBm),NOISEFIGURE(dB) DataSheet NOISEFIGURE(dB) 19 TA=–40°
C TA=+25°
C 17 TA=+85°
C 15 13 11
9 70200400600800100012001400160018002000RFFREQUENCY(MHz) Figure12.NoiseFigurevs.RFFrequency 06764-007 INPUTIP2,INPUTIP3(dBm) 20 80 INPUTIP2,QCHANNEL 15 65 INPUTIP2,ICHANNEL INPUTP1dB 10 50 NOISEFIGURE GAIN
5 35 06764-009 INPUTIP3
0 20 –6–5–4–3–2–10123456 LOLEVEL(dBm) Figure13.ConversionGain,NoiseFigure,IIP3,IIP2,andIP1dBvs.LOLevel,fRF=140MHz 32 195 TA=–40°
C TA=+25°
C 28 TA=+85°
C 185 SUPPLYCURRENT(mA) 24INPUTIP3201612 175 SUPPLYCURRENT 165 155NOISEFIGURE 145
8 135
1 10 100 RBIAS(kΩ) Figure14.NoiseFigure,IIP3,andSupplyCurrentvs.RBIAS,fRF=140MHz 06764-010 Rev.C|Page8of27 DataSheet 25 NOISEFIGURE(dB) 20RBIAS=100kΩRBIAS=10kΩ 15 10 RBIAS=4kΩ RBIAS=1.4kΩ
5 0 –30 –25 –20 –15 –10 –
5 0
5 RFBLOCKERINPUTPOWER(dBm) Figure15.NoiseFigurevs.InputBlockerLevel,fRF=900MHz(RFBlocker5MHzOffset) 20 80 INPUTIP2,ICHANNEL NOISEFIGURE 15 65 GAIN(dB),INPUTP1dB(dBm),NOISEFIGURE(dB) IIP3(dBm)ANDNOISEFIGURE(dB) INPUTIP2,QCHANNEL INPUTP1dB 10 50 GAIN
5 35 INPUTIP3
0 20 –6–5–4–3–2–10123456 LOLEVEL(dBm) Figure16.ConversionGain,NoiseFigure,IIP3,IIP2,andIP1dBvs.LOLevel,fRF=900MHz 32 TA=–40°
C TA=+25°
C 28 TA=+85°
C INPUTIP3 24 20NOISEFIGURE 16 12
8 1 10 100 RBIAS(kΩ) Figure17.IIP3andNoiseFigurevs.RBIAS,fRF=900MHz INPUTIP2,INPUTIP3(dBm) 06764-013 FEEDTHROUGH(dBm) 06764-012 06764-011 GAIN(dB),IP1dB,IIP2,IANDQCHANNELS(dBm) ADL5387 80 70 60140MHz:GAIN 50 140MHz:IP1dB 140MHz:IIP2,ICHANNEL 40 140MHz:IIP2,QCHANNEL 450MHz:GAIN 30 450MHz:IP1dB 450MHz:IIP2,ICHANNEL 20 450MHz:IIP2,QCHANNEL 10 06764-014
0 1 10 100 RBIAS(kΩ) Figure18.ConversionGain,IP1dB,IIP2IChannel,andIIP2QChannelvs.RBIAS INPUTIP2,IANDQCHANNELS(dBm) 35 80 30 IIP3 INPUTIP2, 75 ICHANNEL 25 70 IP1dB,IIP3(dBm) 20 INPUTIP2, 65 QCHANNEL 15 60 10 TA=–40°
C IP1dB 55 TA=+25°
C TA=+85°
C 5 50 05101520253035404550 BBFREQUENCY(MHz) Figure19.IIIP3,IIP2,IP1dBvs.BasebandFrequency 06764-015
0 –10 –20 –30 –40 1xLO(INTERNAL) –50 –60 2xLO(EXTERNAL) –70 06764-016 –800 200400600800100012001400160018002000INTERNAL1xLOFREQUENCY(MHz) Figure20.LO-to-BBFeedthroughvs.1xLOFrequency(InternalLOFrequency) Rev.C|Page9of27 ADL5387
0 –
5 RETURNLOSS(dB) –10 –15 –20 –250 200400600800100012001400160018002000RFFREQUENCY(MHz) Figure21.RFPortReturnLossvs.RFFrequency,MeasuredonCharacterizationBoardthroughETC1-1-13Balunwith120nHBiasInductors –20 –30 –40 LOLEAKAGE(dBm) –50 –601xLO –70 –80 –90–100
0 2xLO 200400600800100012001400160018002000INTERNAL1xLOFREQUENCY(MHz) Figure22.LO-to-RFLeakagevs.Internal1xLOFrequency 06764-018 RETURNLOSS(dB) 06764-017 LEAKAGE(dBc) DataSheet –20 –40 –60 –80 –100 06764-019 –1200 200400600800100012001400160018002000RFFREQUENCY(MHz) Figure23.RF-to-LOLeakagevs.RFFrequency
0 –
5 –10 –15 –20 –25 –300 5001000150020002500300035004000FREQUENCY(MHz) Figure24.Single-EndedLOPortReturnLossvs.LOFrequency,LOINAC-CoupledtoGround 06764-020 Rev.C|Page10of27 DataSheet DISTRIBUTIONSFORfRF=140MHz 100TA=–40°CTA=+25°CTA=+85°C 80 PERCENTAGE(%) 60 40 20
0 28 29 30 31 32 33 INPUTIP3(dBm) Figure25.IIP3Distributions 100TA=–40°CTA=+25°CTA=+85°C 80 PERCENTAGE(%) 60 40 20
0 10 11 12 13 14 15 INPUTP1dB(dBm) Figure26.IP1dBDistributions 100TA=–40°CTA=+25°CTA=+85°C 80 PERCENTAGE(%) 60 40 20
0 –0.2 –0.1
0 0.1 0.2 I/QGAINMISMATCH(dB) Figure27.I/QGainMismatchDistributions 06764-023 PERCENTAGE(%) 06764-022 PERCENTAGE(%) 06764-121 PERCENTAGE(%) ADL5387 06764-024 100 TA=–40°
C TA=+25°
C TA=+85°
C 80 ICHANNEL QCHANNEL 60 40 20
0 60 65 70 75 INPUTIP2(dBm) Figure28.IIP2DistributionsforIChannelandQChannel 100TA=–40°CTA=+25°CTA=+85°C 80 60 40 20
0 10.5 11.0 11.5 12.0 12.5 13.0 13.5 NOISEFIGURE(dB) Figure29.NoiseFigureDistributions 100TA=–40°CTA=+25°CTA=+85°C 80 60 40 20
0 –1.0 –0.5
0 0.5 1.0 QUADRATUREPHASEERROR(Degrees) Figure30.I/QQuadratureErrorDistributions 06764-025 06764-026 Rev.C|Page11of27 ADL5387 DISTRIBUTIONSFORfRF=450MHz 100TA=–40°CTA=+25°CTA=+85°C 80 PERCENTAGE(%) 60 40 20
0 30 31 32 33 34 35 INPUTIP3(dBm) Figure31.IIP3Distributions 100TA=–40°CTA=+25°CTA=+85°C 80 PERCENTAGE(%) 60 40 20
0 10 11 12 13 14 15 INPUTP1dB(dBm) Figure32.IP1dBDistributions 100TA=–40°CTA=+25°CTA=+85°C 80 PERCENTAGE(%) 60 40 20
0 –0.2 –0.1
0 0.1 0.2 I/QGAINMISMATCH(dB) Figure33.I/QGainMismatchDistributions 06764-029 PERCENTAGE(%) 06764-028 PERCENTAGE(%) 06764-127 PERCENTAGE(%) DataSheet 06764-030 100 TA=–40°
C TA=+25°
C TA=+85°
C 80 ICHANNEL QCHANNEL 60 40 20
0 60 65 70 75 INPUTIP2(dBm) Figure34.IIP2DistributionsforIChannelandQChannel 100TA=–40°CTA=+25°CTA=+85°C 80 60 40 20
0 12.0 12.5 13.0 13.5 14.0 14.5 15.0 NOISEFIGURE(dB) Figure35.NoiseFigureDistributions 100TA=–40°CTA=+25°CTA=+85°C 80 60 40 20
0 –1.0 –0.5
0 0.5 1.0 QUADRATUREPHASEERROR(Degrees) Figure36.I/QQuadratureErrorDistributions 06764-031 06764-032 Rev.C|Page12of27 DataSheet DISTRIBUTIONSFORfRF=900MHz 100TA=–40°CTA=+25°CTA=+85°C 80 PERCENTAGE(%) 60 40 20
0 30 31 32 33 34 35 INPUTIP3(dBm) Figure37.IIP3Distributions 100TA=–40°CTA=+25°CTA=+85°C 80 PERCENTAGE(%) 60 40 20
0 10 11 12 13 14 15 INPUTP1dB(dBm) Figure38.IP1dBDistributions 100TA=–40°CTA=+25°CTA=+85°C 80 PERCENTAGE(%) 60 40 20
0 –0.2 –0.1
0 0.1 0.2 I/QGAINMISMATCH(dB) Figure39.I/QGainMismatchDistributions 06764-035 PERCENTAGE(%) 06764-034 PERCENTAGE(%) 06764-033 PERCENTAGE(%) ADL5387 06764-036 100 TA=–40°
C TA=+25°
C TA=+85°
C 80 ICHANNEL QCHANNEL 60 40 20
0 55 60 65 70 75 INPUTIP2(dBm) Figure40.IIP2DistributionsforIChannelandQChannel 100TA=–40°CTA=+25°CTA=+85°C 80 60 40 20
0 13.0 13.5 14.0 14.5 15.0 15.5 16.0 NOISEFIGURE(dB) Figure41.NoiseFigureDistributions 100TA=–40°CTA=+25°CTA=+85°C 80 60 40 20
0 –1.0 –0.5
0 0.5 1.0 QUADRATUREPHASEERROR(Degrees) Figure42.I/QQuadratureErrorDistributions 06764-037 06764-038 Rev.C|Page13of27 ADL5387 DISTRIBUTIONSFORfRF=1900MHz 100TA=–40°CTA=+25°CTA=+85°C 80 PERCENTAGE(%) 60 40 20
0 26 27 28 29 30 31 INPUTIP3(dBm) Figure43.IIP3Distributions 100TA=–40°CTA=+25°CTA=+85°C 80 PERCENTAGE(%) 60 40 20
0 10 11 12 13 14 15 INPUTP1dB(dBm) Figure44.IP1dBDistributions 100TA=–40°CTA=+25°CTA=+85°C 80 PERCENTAGE(%) 60 40 20
0 –0.2 –0.1
0 0.1 0.2 I/QGAINMISMATCH(dB) Figure45.I/QGainMismatchDistributions 06764-041 PERCENTAGE(%) 06764-040 PERCENTAGE(%) 06764-039 PERCENTAGE(%) DataSheet 06764-042 100 80 60 40 TA=–40°
C TA=+25°
C 20 TA=+85°
C ICHANNEL QCHANNEL
0 52 54 56 58 60 62 64 66 68 INPUTIP2(dBm) Figure46.IIP2DistributionsforIChannelandQChannel 100TA=–40°CTA=+25°CTA=+85°C 80 60 40 20
0 15.0 15.5 16.0 16.5 17.0 17.5 18.0 NOISEFIGURE(dB) Figure47.NoiseFigureDistributions 100TA=–40°CTA=+25°CTA=+85°C 80 60 40 20
0 –1.0 –0.5
0 0.5 1.0 QUADRATUREPHASEERROR(Degrees) Figure48.I/QQuadratureErrorDistributions 06764-043 06764-044 Rev.C|Page14of27 DataSheet CIRCUITDESCRIPTION TheADL5387canbedividedintofivesections:thelocaloscillator(LO)interface,theRFvoltage-to-current(V-to-I)converter,themixers,thedifferentialemitterfolloweroutputs,andthebiascircuit.AdetailedblockdiagramofthedeviceisshowninFigure49. BIAS IHI RFIPRFIN DIVIDE-BY-TWOQUADRATUREPHASESPLITTER ILOLOIPLOINQHI 06764-045 QLO Figure49.BlockDiagram TheLOinterfacegeneratestwoLOsignalsat90°ofphasedifferencetodrivetwomixersinquadrature.RFsignalsareconvertedintocurrentsbytheV-to-Iconvertersthatfeedintothetwomixers.ThedifferentialIandQoutputsofthemixersarebufferedviaemitterfollowers.Referencecurrentstoeachsectionaregeneratedbythebiascircuit.Adetaileddescriptionofeachsectionfollows. LOINTERFACE TheLOinterfaceconsistsofabufferamplifierfollowedbyafrequencydividerthatgeneratetwocarriersathalftheinputfrequencyandinquadraturewitheachother.Eachcarrieristhenamplifiedandamplitude-limitedtodrivethedoublebalancedmixers. ADL5387 V-TO-ICONVERTER ThedifferentialRFinputsignalisappliedtoaresistivelymonbasestage,whichconvertsthedifferentialinputvoltagetooutputcurrents.Theoutputcurrentsthenmodulatethetwohalf-frequencyLOcarriersinthemixerstage. MIXERS TheADL5387hastwodouble-balancedmixers:oneforthein-phasechannel(Ichannel)andoneforthequadraturechannel(Qchannel).ThesemixersarebasedontheGilbertcelldesignoffourcross-connectedtransistors.Theoutputcurrentsfromthetwomixersaresummedtogetherintheresistiveloadsthatthenfeedintothesubsequentemitterfollowerbuffers. EMITTERFOLLOWERBUFFERS TheoutputemitterfollowersdrivethedifferentialIandQsignalsoff-chip.Theoutputimpedanceissetbyon-chip25Ωseriesresistorsthatyielda50Ωdifferentialoutputimpedanceforeachbasebandport.Thefixedoutputimpedanceformsavoltagedividerwiththeloadimpedancethatreducestheeffectivegain.Forexample,a500Ωdifferentialloadhas1dBlowereffectivegainthanahigh(10kΩ)differentialloadimpedance. BIASCIRCUIT Abandgapreferencecircuitgeneratestheproportional-toabsolutetemperature(PTAT)aswellastemperature-independentreferencecurrentsusedbydifferentsections.ThemixercurrentcanbereducedviaanexternalresistorbetweentheBIASpinandground.WhentheBIASpinisopen,themixerrunsatmaximumcurrentandhencethegreatestdynamicrange.Themixercurrentcanbereducedbyplacingaresistancetoground;therefore,reducingoverallpowerconsumption,noisefigure,andIIP3.TheeffectoneachoftheseparametersisshowninFigure14,Figure17,andFigure18. Rev.C|Page15of27 ADL5387 APPLICATIONSINFORMATION BASICCONNECTIONS Figure51showsthebasicconnectionsschematicfortheADL5387. POWERSUPPLY ThenominalvoltagesupplyfortheADL5387is5VandisappliedtotheVPA,VPB,VPL,andVPXpins.GroundshouldbeconnectedtotheCOM,CML,andCMRFpins.Eachofthesupplypinsshouldbedecoupledusingtwocapacitors;mendedcapacitorvaluesare100pFand0.1µ
F. LOCALOSCILLATOR(LO)INPUT TheLOportisdriveninasingle-endedmanner.TheLOsignalmustbeac-coupledviaa1000pFcapacitordirectlyintoLOIP,andLOINisac-coupledtogroundalsousinga1000pFcapacitor.TheLOportisdesignedforabroadband50Ωmatchandthereforeexhibitsexcellentreturnlossfrom60MHzto4GHz.TheLOreturnlosscanbeseeninFigure24.Figure50showstheLOinputconfiguration. DataSheet LOINPUT 8LOIP1000pF 1000pF 9LOIN 06764-047 Figure50.Single-EndedLODrive ThemendedLOdrivelevelisbetween−6dBmand+6dBm.Foroperationbelow50MHz,aminimumLOdrivelevelof0dBmshouldbeused.TheLOfrequencyattheinputtothedeviceshouldbetwicethatofthedesiredLOfrequencyatthemixercore.TheappliedLOfrequencyrangeisbetween60MHzand4GHz. RFC ETC1-1-13 120nH1000pF1000pF120nH VPOS 0.1µ
F 100pF VPOS0.1µ
F 100pF 242322 CMRFCMRFRFIP1VPA 2120RFINCMRF 19 VPXVPB18 2COM VPB17 100pF VPOS0.1µ
F 3BIAS4VPL ADL5387 QHI16QLO15 5VPL IHI14 6VPLCML7 LOIP8 LOIN9 CML10 CML11 ILO13COM 12 QHIQLOIHIILO 1000pFLO 1000pF Figure51.BasicConnectionsSchematicforADL5387 06764-046 Rev.C|Page16of27 DataSheet RFINPUT TheRFinputshaveadifferentialinputimpedanceofapproximately50Ω.Foroptimumperformance,theRFportshouldbedrivendifferentiallythroughabalun.ThemendedbalunisM/A-COMETC1-1-13.TheRFinputstothedeviceshouldbeac-coupledwith1000pFcapacitors.Ground-referencedchokeinductorsmustalsobeconnectedtoRFIPandRFIN(mendedvalue=120nH,Coilcraft0402CS-R12XJL)forappropriatebiasing.Severalimportantaspectsmustbetakenintoountwhenselectinganappropriatechokeinductorforthisapplication.First,theinductormustbeabletohandletheapproximately40mAofstandingdccurrentbeingdeliveredfromeachoftheRFinputpins(RFIP,RFIN).(Thesuggested0402inductorhasa50mAcurrentrating).ThepurposeofthechokeinductorsistoprovideaverylowresistancedcpathtogroundandhighacimpedanceattheRFfrequencysoasnottoaffecttheRFinputimpedance.AchokeinductorthathasaselfresonantfrequencygreaterthantheRFinputfrequencyensuresthatthechokeisstilllookinginductiveandthereforehasamorepredictableacimpedance(jωL)attheRFfrequency.Figure52showstheRFinputconfiguration. ETC1-1-13RFINPUT 120nH21RFIN 1000pF 1000pF22RFIP 120nH Figure52.RFInput 06764-04806764-050 ADL5387 ThedifferentialRFportreturnlosshasbeencharacterizedasshowninFigure53. –10 –12 –14 –16 S(1,1)(dB) 06764-049 –18 –20 –22 –24 –26 –280 0.20.40.60.81.01.21.41.61.82.0FREQUENCY(GHz) Figure53.DifferentialRFPortReturnLoss BASEBANDOUTPUTS ThebasebandoutputsQHI,QLO,IHI,andILOarefixedimpedanceports.Eachbasebandpairhasa50Ωdifferentialoutputimpedance.Theoutputscanbepresentedwithdifferentialloadsaslowas200Ω(withsomedegradationinlinearityandgain)orhighimpedancedifferentialloads(500Ωorgreaterimpedanceyieldsthesameexcellentlinearity)thatistypicalofanADC.TheTCM9-19:1balunconvertsthedifferentialIFoutputtosingle-ended.Whenloadedwith50Ω,thisbalunpresentsa450Ωloadtothedevice.Thetypicalmaximumlinearvoltageswingfortheseoutputsis2Vp-pdifferential.ThebiaslevelonthesepinsisequaltoVPOS−2.8V.Theoutput3dBbandwidthis240MHz.Figure54showsthebasebandoutputconfiguration. QHI16 QHI QLO15 QLO IHI14 IHI ILO13 ILO Figure54.BasebandOutputConfiguration Rev.C|Page17of27 ADL5387 ERRORVECTORMAGNITUDE(EVM)PERFORMANCE EVMisameasureusedtoquantifytheperformanceofadigitalradiotransmitterorreceiver.Asignalreceivedbyareceiverwouldhaveallconstellationpointsattheideallocations;however,variousimperfectionsintheimplementation(suchascarrierleakage,phasenoise,andquadratureerror)causetheactualconstellationpointstodeviatefromtheideallocations. TheADL5387showsexcellentEVMperformanceforvariousmodulationschemes.Figure55showstypicalEVMperformanceoverinputpowerrangeforapoint-to-pointapplicationwith16QAMmodulationschemesandzero-IFbaseband.ThedifferentialdcoffsetsontheADL5387areintheorderofafewmV.However,accouplingthebasebandoutputswith10µFcapacitorshelpstoeliminatedcoffsetsandenhancesEVMperformance.Witha10MHzBWsignal,10µFaccouplingcapacitorswiththe500Ωdifferentialloadresultsinahigh-passcornerfrequencyof~64Hzwhichabsorbsaninsignificantamountofmodulatedsignalenergyfromthebasebandsignal.Byusingaccouplingcapacitorsatthebasebandoutputs,thedcoffseteffects,whichcanlimitdynamicrangeatlowinputpowerlevels,canbeeliminated.
0 –
5 –10 –15 –20 EVM(dB) –25 –30 –35 –40 –45 06764-051 –50 –70–60–50–40–30–20–10
0 10 INPUTPOWER(dBm) Figure55.RF=140MHz,IF=0Hz,EVMvs.InputPowerfora16QAM10Msym/sSignal(AC-CoupledBasebandOutputs) DataSheet Figure56showstheEVMperformanceoftheADL5387whenac-coupled,withanIEEE802.16eWiMAXsignal.
0 –
5 –10 –15 –20 EVM(dB) –25 –30 –35 –40 –45 06764-052 –50 –50 –40 –30 –20 –10
0 INPUTPOWER(dBm) 10 20 Figure56.RF=750MHz,IF=0Hz,EVMvs.InputPowerfora16QAM10MHzBandwidthMobileWiMAXSignal(AC-CoupledBasebandOutputs) Figure57exhibitsthezeroIFEVMperformanceofaWCDMAsignaloverawideRFinputpowerrange.
0 –
5 –10 –15 EVM(dB) –20 –25 –30 –35 –40 06764-053 –45 –70–60–50–40–30–20–10
0 10 INPUTPOWER(dBm) Figure57.RF=1950MHz,IF=0Hz,EVMvs.InputPowerforaWCDMA(AC-CoupledBasebandOutputs) Rev.C|Page18of27 DataSheet ADL5387 ωIF ωIF ωLSBωLOωUSB COSωLOt –ωIF
0 +ωIF –ωIF
0 +ωIF SINωLOtFigure58.IllustrationoftheImageProblem 0°–90° +90°0°
0 +ωIF
0 +ωIF 06764-054 LOWIFIMAGEREJECTION Theimagerejectionratioistheratiooftheintermediatefrequency(IF)signallevelproducedbythedesiredinputfrequencytothatproducedbytheimagefrequency.Theimagerejectionratioisexpressedindecibels.Appropriateimagerejectioniscriticalbecausetheimagepowercanbemuchhigherthanthatofthedesiredsignal,therebyplaguingthedownconversionprocess.Figure58illustratestheimageproblem.Iftheuppersideband(lowersideband)isthedesiredband,a90°shifttotheQchannel(Ichannel)cancelstheimageatthelowersideband(uppersideband). Figure59showstheexcellentimagerejectioncapabilitiesoftheADL5387forlowIFapplications,suchasCDMA2000.TheADL5387exhibitsimagerejectiongreaterthan45dBoverthebroadfrequencyrangeforanIF=1.23MHz.
0 IMAGEREJECTIONAT1.23MHz(dB) 06764-055 –10 –20 –30 –40 –50 –60 –7050 25045065085010501250145016501850RFINPUTFREQUENCY(MHz) Figure59.ImageRejectionvs.RFInputFrequencyforaCDMA2000Signal,IF=1.23MHz EXAMPLEBASEBANDINTERFACE Inmostdirectconversionreceiverdesigns,itisdesirabletoselectawantedcarrierwithinaspecifiedband.ThedesiredchannelcanbedemodulatedbytuningtheLOtotheappropriatecarrierfrequency.IfthedesiredRFbandcontainsmultiplecarriersofinterest,theadjacentcarrierswouldalsobedownconvertedtoalowerIFfrequency.Theseadjacentcarrierscanbeproblematiciftheyarelargerelativetothewantedcarrierastheycanoverdrivethebasebandsignaldetectioncircuitry.Asaresult,itisoftennecessarytoinsertafiltertoprovidesufficientrejectionoftheadjacentcarriers. ItisnecessarytoconsidertheoverallsourceandloadimpedancepresentedbytheADL5387andADCinputtodesignthework.ThedifferentialbasebandoutputimpedanceoftheADL5387is50Ω.TheADL5387isdesignedtodriveahighimpedanceADCinput.ItmaybedesirabletoterminatetheADCinputdowntolowerimpedancebyusingaterminatingresistor,suchas500Ω.TheterminatingresistorhelpstobetterdefinetheinputimpedanceattheADCinput.Theorderandtypeofworkdependsonthedesiredhighfrequencyrejectionrequired,pass-bandripple,andgroupdelay.Filterdesigntablesprovideoutlinesforvariousfiltertypesandorders,illustratingthenormalizedinductorandcapacitorvaluesfora1Hzcutofffrequencyand1Ωload.Afterscalingthenormalizedprototypeelementvaluesbytheactualdesiredcut-offfrequencyandloadimpedance,theseriesreactanceelementsarehalvedtorealizethefinalbalancedponentvalues. Rev.C|Page19of27 ADL5387 Asanexample,asecond-order,Butterworth,low-passfilterdesignisshowninFigure60wherethedifferentialloadimpedanceis500Ω,andthesourceimpedanceoftheADL5387is50Ω.Thenormalizedseriesinductorvalueforthe10-to-1,load-tosourceimpedanceratiois0.074H,andthenormalizedshuntcapacitoris14.814F.Fora10.9MHzcutofffrequency,thesingle-endedequivalentcircuitconsistsofa0.54µHseriesinductorfollowedbya433pFshuntcapacitor. Thebalancedconfigurationisrealizedasthe0.54µHinductor issplitinhalftorealizeworkshowninFigure60. RS=50Ω LN=0.074H NORMALIZED VS SINGLE-ENDEDCN14.814F RL=500Ω CONFIGURATION RS=0.1RL RS=50Ω VS 0.54µ
H DENORMALIZEDSINGLE-ENDED EQUIVALENT fC=1Hz 433pF RL=500Ω R2S=25ΩVS R2S=25Ω 0.27µ
H BALANCEDCONFIGURATION 0.27µ
H 433pF fC=10.9MHz RL2 = 250Ω R2L=250Ω Figure60.Second-Order,Butterworth,Low-PassFilterDesignExample pletedesignexampleisshowninFigure63.Asixth-orderButterworthdifferentialfilterhavinga1.9MHzcornerfrequencyinterfacestheoutputoftheADL5387tothatofanADCinput.The500ΩloadresistordefinestheinputimpedanceoftheADC.ThefilteradherestotypicaldirectconversionWCDMAapplications,where1.92MHzawayfromthecarrierIFfrequency,1dBofrejectionisdesiredand2.7MHzaway10dBofrejectionisdesired. 06764-056 DELAY(ns) DataSheet Figure61andFigure62showthemeasuredfrequencyresponseandgroupdelayofthefilter. 10
5 MAGNITUDERESPONSE(dB)
0 –
5 –10 –15 06764-157 –200 900800700600500400300200100
0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 FREQUENCY(MHz) Figure61.BasebandFilterResponse 0.20.40.60.81.01.21.41.61.8FREQUENCY(MHz) Figure62.BasebandFilterGroupDelay 06764-158 Rev.C|Page20of27 DataSheet RFC ETC1-1-13 ADL5387 270pF91pF68pF500ΩADCINPUT VPOS 0.1µ
F 100pF VPOS0.1µ
F 100pF 120nH1000pF1000pF120nH CAC10µF27µ
H 27µ
H 10µ
H 242322 CMRFCMRFRFIP1VPA 2120RFINCMRF 19 VPXVPB18 2COM VPB17 100pF 3BIAS4VPL ADL5387 QHI16QLO15 VPOS0.1µ
F CAC10µF 27µ
H 27µ
H 10µ
H 5VPL IHI14 6VPLCML7 LOIP8 LOIN9 CML10 CML11 ILO13COM 12 CAC10µF27µ
H 1000pFLO 1000pF CAC10µF 27µ
H Figure63.SixthOrderLow-PassButterworthBasebandFilterSchematic 27µH27µ
H 10µH10µ
H 270pF91pF68pF500Ω06764-159ADCINPUT Rev.C|Page21of27 ADL5387 CHARACTERIZATIONSETUPS Figure64toFigure66showthegeneralcharacterizationbenchsetupsusedextensivelyfortheADL5387.ThesetupshowninFigure66wasusedtodothebulkofthetestingandusedsinusoidalsignalsonboththeLOandRFinputs.AnautomatedAgilentVEEprogramwasusedtocontroltheequipmentovertheIEEEbus.Thissetupwasusedtomeasuregain,IP1dB,IIP2,IIP3,I/Qgainmatch,andquadratureerror.TheADL5387characterizationboardhada9-to-1impedancetransformeroneachofthedifferentialbasebandportstodothedifferential-to-singleendedconversion. ThetwosetupsshowninFigure64andFigure65wereusedformakingNFmeasurements.Figure64showsthesetupformeasuringNFwithnoblockersignalappliedwhileFigure65wasusedtomeasureNFinthepresenceofablocker.Forbothsetups,thenoisewasmeasuredatabasebandfrequencyof DataSheet 10MHz.Forthecasewhereablockerwasapplied,theoutputblockerwasat15MHzbasebandfrequency.NotethatgreatcaremustbetakenwhenmeasuringNFinthepresenceofablocker.TheRFblockergeneratormustbefilteredtopreventitsnoise(whichincreaseswithincreasinggeneratoroutputpower)fromswampingthenoisecontributionoftheADL5387.Atleast30dBofattentionattheRFandimagefrequenciesisdesired.Forexample,witha2xLOof1848MHzappliedtotheADL5387,theinternal1xLOis924MHz.Toobtaina15MHzoutputblockersignal,theRFblockergeneratorissetto939MHzandthefilterstunedsuchthatthereisatleast30dBofattenuationfromthegeneratoratboththedesiredRFfrequency(934MHz)andtheimageRFfrequency(914MHz).Finally,theblockermustberemovedfromtheoutput(bythe10MHzlow-passfilter)topreventtheblockerfromswampingtheanalyzer. 6dBPADFROMSNSPORT HP6235APOWERSUPPLY SNSCONTROL OUTPUT AGILENTN8974ANOISEFIGUREANALYZER RF GNDADL5387 VPOSCHARBOARDLO R150ΩQI LOW-PASSFILTER INPUT IEEE AGILENT8665BSIGNALGENERATOR IEEE PCCONTROLLER Figure64.GeneralNoiseFigureMeasurementSetup 06764-057 Rev.C|Page22of27 DataSheet ADL5387 06764-058 IEEE R&SSMT03SIGNALGENERATOR HP6235APOWERSUPPLY BAND-PASSTUNABLEFILTER BAND-REJECTTUNABLEFILTER 6dBPAD RF GNDADL5387 VPOSCHARBOARDLO R150ΩQ 6dBPADI LOW-PASSFILTER R&SFSEA30SPECTRUMANALYZER 6dBPAD BAND-PASSCAVITYFILTER HP87405LOWNOISE PREAMP AGILENT8665BSIGNALGENERATOR Figure65.MeasurementSetupforNoiseFigureinthePresenceofaBlocker R&SSMT-06 3dBPADRF 3dBPAD 3dBPADINAGILENT11636A RFAMPLIFIER OUT3dBPAD VPGND RF 6dBPAD R&SSMT-06AGILENTE3631PWERSUPPLY RF GNDADL5387 VPOSCHARBOARDLO Q6dBPADI6dBPAD 6dBPAD AGILENTE8257DSIGNALGENERATOR IEEE RFINPUTIEEE SWITCHMATRIX PCCONTROLLER R&SFSEA30SPECTRUMANALYZER Figure66.GeneralADL5387CharacterizationSetup HP8508AVECTORVOLTMETER IEEE IEEE INPUTCHANNELSAANDBIEEE IEEE 06764-059 Rev.C|Page23of27 ADL5387 EVALUATIONBOARD TheADL5387evaluationboardisavailable.Theboardcanbeusedforsingle-endedordifferentialbasebandanalysis.Thedefaultconfigurationoftheboardisforsingle-endedbasebandanalysis. T1RFC C11C10 R8 L2 L1 R7 DataSheet VPOS R1 C1 C2 R2 R3VPOS C3 C4 242322 CMRFCMRFRFIP1VPA 2120RFINCMRF 19 VPXVPB18 2COM VPB17 3BIAS4VPL ADL5387 QHI16QLO15 5VPL IHI14 6VPLCML7 LOIP8 LOIN9 CML10 CML11 ILO13COM 12 C6R17 LO C5C7T4 R6VPOS C8 C9 R9 R14 R15 C12T2 R16 R10R11 R4 R5 C13 T3 R13 R12 QOUTPUTORQHIQLOIOUTPUTORIHIILO Figure67.EvaluationBoardSchematic 06764-060 Rev.C|Page24of27 DataSheet ADL5387 Table4.EvaluationBoardConfigurationOptions ComponentFunction VPOS,GNDPowerSupplyandGroundVectorPins. R1,R3,R6 PowerSupplyDecoupling.Shortsorpowersupplydecouplingresistors. C1,C2,C3,C4,C8,C9 Thecapacitorsprovidetherequireddccouplingupto2GHz. C5,C6,C7,C10,C11 ACCouplingCapacitors.Thesecapacitorsprovidetherequiredaccouplingfrom50MHzto2GHz.Foroperationdownto30MHz,C10andC11shouldbechangedto0.01µ
F. R4,R5,R9toR16 Single-EndedBasebandOutputPath.Thisisthedefaultconfigurationoftheevaluationboard.R14toR16andR4,R5,andR13arepopulatedforappropriatebaluninterface.R9,R10andR11,R12arenotpopulated.BasebandoutputsaretakenfromQHIandIHI. DefaultConditionNotApplicableR1,R3,R6=0Ω(0805)C2,C4,C8=100pF(0402)C1,C3,C9=0.1µF(0603)C5,C6,C10,C11=1000pF(0402),C7=Open R4,R5,R13toR16=0Ω(0402),R9toR12=Open L1,L2,R7,R8T2,T3 C12,C13R17 T1R2 Theusercanreconfiguretheboardtousefulldifferentialbasebandoutputs.R9toR12provideameanstobypassthe9:1TCM9-1transformertoallowfordifferentialbasebandoutputs.essthedifferentialbasebandsignalsbypopulatingR9toR12with0ΩandnotpopulatingR4,R5,R13toR16.Thiswaythetransformerdoesnotneedtoberemoved.ThebasebandoutputsaretakenfromtheSMAsofQ_HI,Q_LO,I_HI,andI_LO. InputBiasing.Inductanceandresistancesetstheinputbiasingofmonbaseinputstage.Defaultvalueis120nHforoperationabove50MHz.Foroperationdownto30MHz,L1andL2shouldbechangedto680nH. IFOutputInterface.TCM9-1convertsadifferentialhighimpedanceIFoutputtoasingleendedoutput.Whenloadedwith50Ω,thisbalunpresentsa450Ωloadtothedevice.Thecentertapcanbedecoupledthroughacapacitortoground. DecouplingCapacitors.C12andC13arethedecouplingcapacitorsusedtorejectnoiseonthecentertapoftheTCM9-
1. LOInputInterface.TheLOisdrivenasasingle-endedsignal.Although,thereisnoperformancechangeforadifferentialsignaldrive,theoptionisavailablebyplacingatransformer(T4,ETC1-1-13)ontheLOinputpath. RFInputInterface.ETC1-1-13isa1:1RFbalunthatconvertsthesingle-endedRFinputtodifferentialsignal. RBIAS.Optionalbiassettingresistor.SeetheBiasCircuitsectiontoseehowtousethisfeature. L1,L2=120nH(0402)R7,R8=0Ω(0402)T2,T3=TCM9-1,9:1(Mini-Circuits) C12,C13=0.1µF(0402)R17=0Ω(0402) T1=ETC1-1-13,1:1(M/ACOM)R2=Open Rev.C|Page25of27 ADL5387 DataSheet 06764-166 06764-164 Figure68.EvaluationBoardTopLayer Figure70.EvaluationBoardBottomLayer 06764-165 Figure69.EvaluationBoardTopLayerSilkscreen Figure71.EvaluationBoardBottomLayerSilkscreen Rev.C|Page26of27 06764-167 DataSheetOUTLINEDIMENSIONS PIN1INDICATOR 0.800.750.70SEATINGPLANE 4.104.00SQ3.90 TOPVIEW 0.300.250.20 0.50BSC 19 24 18
1 EXPOSEDPAD
6 PIN1INDICATOR 2.402.30SQ2.20 13 0.50 12
7 0.20MIN 0.40 BOTTOMVIEW 0.30 0.05MAX0.02NOM FORPROPERCONNECTIONOFTHEEXPOSEDPAD,REFERTOTHEPINCONFIGURATIONANDFUNCTIONDESCRIPTIONSSECTIONOFTHISDATASHEET. COPLANARITY0.08 0.203REF COMPLIANTTOJEDECSTANDARDSMO-220-WGGD-
8. Figure72.24-LeadLeadFrameChipScalePackage[LFCSP]4mm×4mmBodyand0.75mmPackageHeight(CP-24-14)Dimensionsshowninmillimeters 01-18-2012-
A ADL5387 ORDERINGGUIDE Model1 TemperatureRange ADL5387ACPZ-R2 –40°Cto+85°
C ADL5387ACPZ-R7 –40°Cto+85°
C ADL5387ACPZ-WP–40°Cto+85°
C ADL5387-EVALZ 1Z=RoHSCompliantPart. PackageDescription24-LeadLFCSP24-LeadLFCSP,7”TapeandReel24-LeadLFCSP,WafflePackEvaluationBoard PackageOptionCP-24-14CP-24-14CP-24-14 OrderingQuantity2501,50064 ©2007–2016AnalogDevices,Inc.Allrightsreserved.Trademarksandregisteredtrademarksarethepropertyoftheirrespectiveowners. D06764-0-8/16(C) Rev.C|Page27of27
7 LOIP8 LOIN9 CML10 CML11 ILO13COM 12 Figure1. Thefullybalanceddesignminimizeseffectsfromsecond-orderdistortion.TheleakagefromtheLOporttotheRFportis<−70dBc.Differentialdc-offsetsattheIandQoutputsare<10mV.BothofthesefactorscontributetotheexcellentIIP2specifications>60dBm. TheADL5387operatesoffasingle4.75Vto5.25Vsupply.ThesupplycurrentisadjustablewithanexternalresistorfromtheBIASpintoground. TheADL5387isfabricatedusingtheAnalogDevices,Inc.,advancedsilicon-germaniumbipolarprocessandisavailableina24-leadexposedpaddleLFCSP. Rev.C DocumentFeedback InformationfurnishedbyAnalogDevicesisbelievedtobeurateandreliable.However,no responsibilityisassumedbyAnalogDevicesforitsuse,norforanyinfringementsofpatentsorother rightsofthirdpartiesthatmayresultfromitsuse.Specificationssubjecttochangewithoutnotice.No licenseisgrantedbyimplicationorotherwiseunderanypatentorpatentrightsofAnalogDevices. Trademarksandregisteredtrademarksarethepropertyoftheirrespectiveowners. OneTechnologyWay,
P.O.Box9106,Norwood,MA02062-9106,
U.S.A. Tel:781.329.4700©2007–2016AnalogDevices,Inc.Allrightsreserved. TechnicalSupport ADL5387*PRODUCTPAGEQUICKLINKS LastContentUpdate:02/23/2017 COMPARABLEPARTS Viewaparametricsearchparableparts. EVALUATIONKITS •ADL5387EvaluationBoard DOCUMENTATION ApplicationNotes•AN-924:DigitalQuadratureModulatorGainDataSheet•ADL5387:30MHzto2GHzQuadratureDemodulatorData Sheet TOOLSANDSIMULATIONS •ADIsimPLL™•ADIsimRF REFERENCEDESIGNS •CN0245•CN0248 REFERENCEMATERIALS ProductSelectionGuide•RFSourceBooklet DESIGNRESOURCES •ADL5387MaterialDeclaration•PCN-PDNInformation•QualityAndReliability•SymbolsandFootprints DISCUSSIONS ViewallADL5387EngineerZoneDiscussions. SAMPLEANDBUY Visittheproductpagetoseepricingoptions. TECHNICALSUPPORT Submitatechnicalquestionorfindyourregionalsupportnumber. DOCUMENTFEEDBACK Submitfeedbackforthisdatasheet. ThispageisdynamicallygeneratedbyAnalogDevices,Inc.,andinsertedintothisdatasheet.Adynamicchangetothecontentonthispagewillnottriggerachangetoeithertherevisionnumberorthecontentoftheproductdatasheet.Thisdynamicpagemaybefrequentlymodified. ADL5387 TABLEOFCONTENTS Features
..............................................................................................
1Applications.......................................................................................
1FunctionalBlockDiagram..............................................................1GeneralDescription.........................................................................1RevisionHistory...............................................................................2Specifications.....................................................................................
3AbsoluteMaximumRatings............................................................5 ESDCaution..................................................................................5PinConfigurationandFunctionDescriptions.............................6TypicalPerformanceCharacteristics.............................................7 DistributionsforfRF=140MHz...............................................11DistributionsforfRF=450MHz...............................................12DistributionsforfRF=900MHz...............................................13DistributionsforfRF=1900MHz.............................................14CircuitDescription.........................................................................15LOInterface.................................................................................15V-to-IConverter.........................................................................15 REVISIONHISTORY 8/2016—Rev.BtoRev.CChangedCP-24-2toCP-24-14....................................ThroughoutUpdatedOutlineDimensions.......................................................27ChangestoOrderingGuide..........................................................27 10/2013—Rev.AtoRev.BAddedFigure4,Figure6,andFigure8;RenumberedSequentially.......................................................................................7MovedFigure9,AddedFigure10..................................................8ChangestoFigure25......................................................................11ChangestoFigure31......................................................................12UpdatedOutlineDimensions.......................................................27ChangestoOrderingGuide..........................................................27 DataSheet Mixers..........................................................................................15EmitterFollowerBuffers...........................................................15BiasCircuit..................................................................................15ApplicationsInformation..............................................................16BasicConnections......................................................................16PowerSupply...............................................................................16LocalOscillator(LO)Input......................................................16RFInput.......................................................................................17BasebandOutputs......................................................................17ErrorVectorMagnitude(EVM)Performance.......................18LowIFImageRejection.............................................................19ExampleBasebandInterface.....................................................19CharacterizationSetups.................................................................22EvaluationBoard............................................................................24OutlineDimensions.......................................................................27OrderingGuide..........................................................................27 5/2013—Rev.0toRev.AChangedMinimumOperatingRFFrequencyfrom50MHzto30MHz(Throughout)......................................................................1ChangedMinimumLOInputat2×fLOfrom100MHzto60MHz(Throughout)......................................................................1AddedDynamicPerformance@RF=30MHzParameters.......3ChangestoLocalOscillator(LO)InputSection........................15ChangestoTable4..........................................................................24UpdatedOutlineDimensions.......................................................26ChangestoOrderingGuide..........................................................26 10/2007—Revision0:InitialVersion Rev.C|Page2of27 DataSheet ADL5387 SPECIFICATIONS VS=5V,TA=25°C,fRF=900MHz,fIF=4.5MHz,PLO=0dBm,BIASpinopen,ZO=50Ω,unlessotherwisenoted,basebandoutputsdifferentiallyloadedwith450Ω. Table1.ParameterOPERATINGCONDITIONS LOFrequencyRangeRFFrequencyRangeLOINPUTInputReturnLoss LOInputLevelI/QBASEBANDOUTPUTS VoltageConversionGain DemodulationBandwidthQuadraturePhaseErrorI/QAmplitudeImbalanceOutputDCOffset(Differential)OutputCommon-Mode0.1dBGainFlatnessOutputSwingPeakOutputCurrentPOWERSUPPLIESVoltageCurrent DYNAMICPERFORMANCEatRF=30MHz ConversionGainInputP1dB(IP1dB)Second-OrderInputIntercept(IIP2)Third-OrderInputIntercept(IIP3)I/QMagnitudeImbalanceI/QPhaseImbalanceDYNAMICPERFORMANCEatRF=140MHzConversionGainInputP1dB(IP1dB)Second-OrderInputIntercept(IIP2)Third-OrderInputIntercept(IIP3)LOtoRF RFtoLOI/QMagnitudeImbalanceI/QPhaseImbalanceLOtoI/Q NoiseFigureNoiseFigureunderBlockingConditions Condition Externalinput=2xLOfrequency LOIP,LOINAC-coupledintoLOIPwithLOINbypassed,measuredat2GHz QHI,QLO,IHI,ILO450ΩdifferentialloadonIandQoutputs(at900MHz)200ΩdifferentialloadonIandQoutputs(at900MHz)1Vp-psignal3dBbandwidthat900MHz 0dBmLOinput Differential200ΩloadEachpinVPA,VPL,VPB,VPX BIASpinopenRBIAS=4kΩRFIP,RFIN,L1,L2=680nH,C10,C11=0.01µF1 −5dBmeachinputtone−5dBmeachinputtone RFIP,RFIN −5dBmeachinputtone−5dBmeachinputtoneRFIN,RFIPterminatedin50Ω,1xLOappearingattheRFportLOIN,LOIPterminatedin50Ω RFIN,RFIPterminatedin50Ω,1xLOappearingattheBBport Witha−5dBminterferer5MHzaway MinTyp MaxUnit 0.064 GHz 0.03
2 GHz −10−60 dB+6dBm 4.3 3.2 2400.40.1±5VPOS−2.840212 dB dB MHzDegreesdBmVVMHzVp-pmA 4.75180157 5.25VmAmA 4.51269310.10.3 4.7136731−100 −950.050.2−39 12.014.4 dBdBmdBmdBmdBDegrees dBdBmdBmdBmdBm dBcdBDegreesdBm dBdB Rev.C|Page3of27 ADL5387 ParameterDYNAMICPERFORMANCEatRF=450MHz ConversionGainInputP1dB(IP1dB)Second-OrderInputIntercept(IIP2)Third-OrderInputIntercept(IIP3)LOtoRF RFtoLOI/QMagnitudeImbalanceI/QPhaseImbalanceLOtoI/Q NoiseFigureDYNAMICPERFORMANCEatRF=900MHz ConversionGainInputP1dB(IP1dB)Second-OrderInputIntercept(IIP2)Third-OrderInputIntercept(IIP3)LOtoRF RFtoLOI/QMagnitudeImbalanceI/QPhaseImbalanceLOtoI/Q NoiseFigureNoiseFigureunderBlockingConditionsDYNAMICPERFORMANCEatRF=1900MHzConversionGainInputP1dB(IP1dB)Second-OrderInputIntercept(IIP2)Third-OrderInputIntercept(IIP3)LOtoRF RFtoLOI/QMagnitudeImbalanceI/QPhaseImbalanceLOtoI/Q NoiseFigureNoiseFigureunderBlockingConditions 1SeeFigure64forlocationsofL1,L2,C10,andC11. Condition −5dBmeachinputtone−5dBmeachinputtoneRFIN,RFIPterminatedin50Ω,1xLOappearingattheRFportLOIN,LOIPterminatedin50Ω RFIN,RFIPterminatedin50Ω,1xLOappearingattheBBport −5dBmeachinputtone−5dBmeachinputtoneRFIN,RFIPterminatedin50Ω,1xLOappearingattheRFportLOIN,LOIPterminatedin50Ω RFIN,RFIPterminatedin50Ω,1XLOappearingattheBBportWitha−5dBminterferer5MHzaway −5dBmeachinputtone−5dBmeachinputtoneRFIN,RFIPterminatedin50Ω,1xLOappearingattheRFportLOIN,LOIPterminatedin50Ω RFIN,RFIPterminatedin50Ω,1xLOappearingattheBBportWitha−5dBminterferer5MHzaway MinTyp 4.412.769.232.8−87 −900.050.6−38 13.2 4.312.861.731.2−79 −880.050.2−41 14.715.8 3.812.859.827.4−75 −700.050.3−43 16.518.7 DataSheet MaxUnit dBdBmdBmdBmdBm dBcdBDegreesdBm dB dBdBmdBmdBmdBm dBcdBDegreesdBm dBdB dBdBmdBmdBmdBm dBcdBDegreesdBm dBdB Rev.C|Page4of27 DataSheet ABSOLUTEMAXIMUMRATINGS Table2.Parameter Rating SupplyVoltageVPOS1,VPOS2,VPOS3LOInputPowerRF/IFInputPowerInternalMaximumPowerDissipationθJAMaximumJunctionTemperatureOperatingTemperatureRangeStorageTemperatureRange 5.5V13dBm(re:50Ω)15dBm(re:50Ω)1100mW54°C/W150°C−40°Cto+85°C−65°Cto+125°
C StressesatorabovethoselistedunderAbsoluteMaximumRatingsmaycausepermanentdamagetotheproduct.Thisisastressratingonly;functionaloperationoftheproductattheseoranyotherconditionsabovethoseindicatedintheoperationalsectionofthisspecificationisnotimplied.Operationbeyondthemaximumoperatingconditionsforextendedperiodsmayaffectproductreliability. ESDCAUTION ADL5387 Rev.C|Page5of27 ADL5387PINCONFIGURATIONANDFUNCTIONDESCRIPTIONS 242322 CMRFCMRFRFIP1VPA 2120RFINCMRF 19 VPXVPB18 2COM VPB17 3BIAS4VPL ADL5387 TOPVIEW(NottoScale) QHI16QLO15 5VPL IHI14 6VPLCML7 LOIP8 LOIN9 CML10 CML11 ILO13COM 12 NOTES1.CONNECTTHEEXPOSEDPADDLETOA LOWIMPEDANCEGROUNDPLANE. Figure2.PinConfiguration 06764-002 DataSheet Table3.PinFunctionDescriptions PinNo. Mnemonic Description 1,4to6,17to19 VPA,VPL,VPB,VPXSupply.PositivesupplyforLO,IF,biasingandbasebandsections,respectively.Thesepinsshouldbedecoupledtoboardgroundusingappropriatesizedcapacitors. 2,7,10to12,COM,CML,CMRF20,23,24 Ground.Connecttoalowimpedancegroundplane.
3 BIAS BiasControl.AresistorcanbeconnectedbetweenBIASandCOMtoreducethemixercorecurrent.Thedefaultsettingforthispinisopen. 8,
9 LOIP,LOIN LocalOscillator.ExternalLOinputisat2xLOfrequency.Asingle-endedLOat0dBmcanbeapplied througha1000pFcapacitortoLOIP.LOINshouldbeac-grounded,alsousinga1000pF.Theseinputs canalsobedrivendifferentiallythroughabalun(mendedbalunisM/A-COMETC1-1-13). 13to16 ILO,IHI,QLO,QHI I-ChannelandQ-ChannelMixerBasebandOutputs.Theseoutputshavea50Ωdifferentialoutputimpedance(25Ωperpin).ThebiaslevelonthesepinsisequaltoVPOS−2.8V.Eachoutputpaircanswing2Vp-p(differential)intoaloadof200Ω.Output3dBbandwidthis240MHz. 21,22 RFIN,RFIP RFInput.Asingle-ended50ΩsignalcanbeappliedtotheRFinputsthrougha1:1balun(mendedbalunisM/A-COMETC1-1-13).Ground-referencedinductorsmustalsobeconnectedtoRFIPandRFIN(mendedvalues=120nH). EP ExposedPaddle.Connecttoalowimpedancegroundplane. Rev.C|Page6of27 DataSheet ADL5387 TYPICALPERFORMANCECHARACTERISTICS VS=5V,TA=25°
C,LOdrivelevel=0dBm,RBIAS=open,unlessotherwisenoted. 20TA=–40°CTA=+25°CTA=+85°
C INPUTP1dB 80 IIP270 1560 06764-003 IIP2,IIP3(dBm) GAIN(dB),IP1dB(dBm) 10GAIN
5 00200400600800100012001400160018002000RFFREQUENCY(MHz) Figure3.ConversionGainandInput1dBCompressionPoint(IP1dB)vs.RFFrequency 20TA=–40°CTA=+25°CTA=+85°C 15INPUTP1dB 10 GAIN5 GAIN(dB),IP1dB(dBm) 02030405060708090100110120130FREQUENCY(MHz) Figure4.ConversionGainandInput1dBCompressionPoint(IP1dB)vs.RFFrequency(LowFrequencyRange) 80 ICHANNEL TA=+85°
C QCHANNEL TA=+25°
C 70 TA=–40°
C 60INPUTIP2 50 IIP2,IIP3(dBm) 40 30 20 INPUTIP3(IANDQCHANNELS) 100200400600800100012001400160018002000RFFREQUENCY(MHz) Figure5.InputThird-OrderIntercept(IIP3)andInputSecond-OrderInterceptPoint(IIP2)vs.RFFrequency 06764-004 MAGNITUDEERROR(dB) 06764-104 MAGNITUDEERROR(dB) 50 40IIP3 30 20 TA=–40°
C TA=+25°
C 10TA=+85°
C 2030405060708090100110120130 FREQUENCY(MHz) 06764-106 Figure6.InputThird-OrderIntercept(IIP3)andInputSecond-OrderInterceptPoint(IIP2)vs.RFFrequency(LowFrequencyRange) 2.0TA=–40°C 1.5TTAA==++8255°°CC1.0 0.5
0 –0.5 –1.0 –1.5 –2.00 200400600800100012001400160018002000RFFREQUENCY(MHz) 06764-005 Figure7.I/QGainMismatchvs.RFFrequency 2.0 TA=–40°
C TA=+25°
C 1.5 TA=+85°
C 1.0 0.5
0 –0.5 –1.0 –1.5 –2.02030405060708090100110120130FREQUENCY(MHz) Figure8.I/QGainMismatchvs.RFFrequency(LowFrequencyRange) 06764-108 Rev.C|Page7of27 ADL5387 QUADRATUREPHASEERROR(Degrees) 4TA=–40°C 3TTAA==++8255°°CC210–1–2–3–4 0200400600800100012001400160018002000RFFREQUENCY(MHz) Figure9.I/QQuadraturePhaseErrorvs.RFFrequency QUADRATUREPHASEERROR(Degrees) 4TA=–40°CTA=+25°C 3TA=+85°C 2 1
0 –1 –
2 –3 –42030405060708090100110120130FREQUENCY(MHz) Figure10.I/QQuadraturePhaseErrorvs.RFFrequency(LowFrequencyRange) 5NORMALIZEDTO1MHz
0 –
5 –10 –15 –20 –25 –301 10 100 BBFREQUENCY(MHz) 1000 Figure11.NormalizedI/QBasebandFrequencyResponse BBRESPONSE(dB) 06764-006 IIP3(dBm)ANDNOISEFIGURE(dB) 06764-110 06764-008 GAIN(dB),INPUTP1dB(dBm),NOISEFIGURE(dB) DataSheet NOISEFIGURE(dB) 19 TA=–40°
C TA=+25°
C 17 TA=+85°
C 15 13 11
9 70200400600800100012001400160018002000RFFREQUENCY(MHz) Figure12.NoiseFigurevs.RFFrequency 06764-007 INPUTIP2,INPUTIP3(dBm) 20 80 INPUTIP2,QCHANNEL 15 65 INPUTIP2,ICHANNEL INPUTP1dB 10 50 NOISEFIGURE GAIN
5 35 06764-009 INPUTIP3
0 20 –6–5–4–3–2–10123456 LOLEVEL(dBm) Figure13.ConversionGain,NoiseFigure,IIP3,IIP2,andIP1dBvs.LOLevel,fRF=140MHz 32 195 TA=–40°
C TA=+25°
C 28 TA=+85°
C 185 SUPPLYCURRENT(mA) 24INPUTIP3201612 175 SUPPLYCURRENT 165 155NOISEFIGURE 145
8 135
1 10 100 RBIAS(kΩ) Figure14.NoiseFigure,IIP3,andSupplyCurrentvs.RBIAS,fRF=140MHz 06764-010 Rev.C|Page8of27 DataSheet 25 NOISEFIGURE(dB) 20RBIAS=100kΩRBIAS=10kΩ 15 10 RBIAS=4kΩ RBIAS=1.4kΩ
5 0 –30 –25 –20 –15 –10 –
5 0
5 RFBLOCKERINPUTPOWER(dBm) Figure15.NoiseFigurevs.InputBlockerLevel,fRF=900MHz(RFBlocker5MHzOffset) 20 80 INPUTIP2,ICHANNEL NOISEFIGURE 15 65 GAIN(dB),INPUTP1dB(dBm),NOISEFIGURE(dB) IIP3(dBm)ANDNOISEFIGURE(dB) INPUTIP2,QCHANNEL INPUTP1dB 10 50 GAIN
5 35 INPUTIP3
0 20 –6–5–4–3–2–10123456 LOLEVEL(dBm) Figure16.ConversionGain,NoiseFigure,IIP3,IIP2,andIP1dBvs.LOLevel,fRF=900MHz 32 TA=–40°
C TA=+25°
C 28 TA=+85°
C INPUTIP3 24 20NOISEFIGURE 16 12
8 1 10 100 RBIAS(kΩ) Figure17.IIP3andNoiseFigurevs.RBIAS,fRF=900MHz INPUTIP2,INPUTIP3(dBm) 06764-013 FEEDTHROUGH(dBm) 06764-012 06764-011 GAIN(dB),IP1dB,IIP2,IANDQCHANNELS(dBm) ADL5387 80 70 60140MHz:GAIN 50 140MHz:IP1dB 140MHz:IIP2,ICHANNEL 40 140MHz:IIP2,QCHANNEL 450MHz:GAIN 30 450MHz:IP1dB 450MHz:IIP2,ICHANNEL 20 450MHz:IIP2,QCHANNEL 10 06764-014
0 1 10 100 RBIAS(kΩ) Figure18.ConversionGain,IP1dB,IIP2IChannel,andIIP2QChannelvs.RBIAS INPUTIP2,IANDQCHANNELS(dBm) 35 80 30 IIP3 INPUTIP2, 75 ICHANNEL 25 70 IP1dB,IIP3(dBm) 20 INPUTIP2, 65 QCHANNEL 15 60 10 TA=–40°
C IP1dB 55 TA=+25°
C TA=+85°
C 5 50 05101520253035404550 BBFREQUENCY(MHz) Figure19.IIIP3,IIP2,IP1dBvs.BasebandFrequency 06764-015
0 –10 –20 –30 –40 1xLO(INTERNAL) –50 –60 2xLO(EXTERNAL) –70 06764-016 –800 200400600800100012001400160018002000INTERNAL1xLOFREQUENCY(MHz) Figure20.LO-to-BBFeedthroughvs.1xLOFrequency(InternalLOFrequency) Rev.C|Page9of27 ADL5387
0 –
5 RETURNLOSS(dB) –10 –15 –20 –250 200400600800100012001400160018002000RFFREQUENCY(MHz) Figure21.RFPortReturnLossvs.RFFrequency,MeasuredonCharacterizationBoardthroughETC1-1-13Balunwith120nHBiasInductors –20 –30 –40 LOLEAKAGE(dBm) –50 –601xLO –70 –80 –90–100
0 2xLO 200400600800100012001400160018002000INTERNAL1xLOFREQUENCY(MHz) Figure22.LO-to-RFLeakagevs.Internal1xLOFrequency 06764-018 RETURNLOSS(dB) 06764-017 LEAKAGE(dBc) DataSheet –20 –40 –60 –80 –100 06764-019 –1200 200400600800100012001400160018002000RFFREQUENCY(MHz) Figure23.RF-to-LOLeakagevs.RFFrequency
0 –
5 –10 –15 –20 –25 –300 5001000150020002500300035004000FREQUENCY(MHz) Figure24.Single-EndedLOPortReturnLossvs.LOFrequency,LOINAC-CoupledtoGround 06764-020 Rev.C|Page10of27 DataSheet DISTRIBUTIONSFORfRF=140MHz 100TA=–40°CTA=+25°CTA=+85°C 80 PERCENTAGE(%) 60 40 20
0 28 29 30 31 32 33 INPUTIP3(dBm) Figure25.IIP3Distributions 100TA=–40°CTA=+25°CTA=+85°C 80 PERCENTAGE(%) 60 40 20
0 10 11 12 13 14 15 INPUTP1dB(dBm) Figure26.IP1dBDistributions 100TA=–40°CTA=+25°CTA=+85°C 80 PERCENTAGE(%) 60 40 20
0 –0.2 –0.1
0 0.1 0.2 I/QGAINMISMATCH(dB) Figure27.I/QGainMismatchDistributions 06764-023 PERCENTAGE(%) 06764-022 PERCENTAGE(%) 06764-121 PERCENTAGE(%) ADL5387 06764-024 100 TA=–40°
C TA=+25°
C TA=+85°
C 80 ICHANNEL QCHANNEL 60 40 20
0 60 65 70 75 INPUTIP2(dBm) Figure28.IIP2DistributionsforIChannelandQChannel 100TA=–40°CTA=+25°CTA=+85°C 80 60 40 20
0 10.5 11.0 11.5 12.0 12.5 13.0 13.5 NOISEFIGURE(dB) Figure29.NoiseFigureDistributions 100TA=–40°CTA=+25°CTA=+85°C 80 60 40 20
0 –1.0 –0.5
0 0.5 1.0 QUADRATUREPHASEERROR(Degrees) Figure30.I/QQuadratureErrorDistributions 06764-025 06764-026 Rev.C|Page11of27 ADL5387 DISTRIBUTIONSFORfRF=450MHz 100TA=–40°CTA=+25°CTA=+85°C 80 PERCENTAGE(%) 60 40 20
0 30 31 32 33 34 35 INPUTIP3(dBm) Figure31.IIP3Distributions 100TA=–40°CTA=+25°CTA=+85°C 80 PERCENTAGE(%) 60 40 20
0 10 11 12 13 14 15 INPUTP1dB(dBm) Figure32.IP1dBDistributions 100TA=–40°CTA=+25°CTA=+85°C 80 PERCENTAGE(%) 60 40 20
0 –0.2 –0.1
0 0.1 0.2 I/QGAINMISMATCH(dB) Figure33.I/QGainMismatchDistributions 06764-029 PERCENTAGE(%) 06764-028 PERCENTAGE(%) 06764-127 PERCENTAGE(%) DataSheet 06764-030 100 TA=–40°
C TA=+25°
C TA=+85°
C 80 ICHANNEL QCHANNEL 60 40 20
0 60 65 70 75 INPUTIP2(dBm) Figure34.IIP2DistributionsforIChannelandQChannel 100TA=–40°CTA=+25°CTA=+85°C 80 60 40 20
0 12.0 12.5 13.0 13.5 14.0 14.5 15.0 NOISEFIGURE(dB) Figure35.NoiseFigureDistributions 100TA=–40°CTA=+25°CTA=+85°C 80 60 40 20
0 –1.0 –0.5
0 0.5 1.0 QUADRATUREPHASEERROR(Degrees) Figure36.I/QQuadratureErrorDistributions 06764-031 06764-032 Rev.C|Page12of27 DataSheet DISTRIBUTIONSFORfRF=900MHz 100TA=–40°CTA=+25°CTA=+85°C 80 PERCENTAGE(%) 60 40 20
0 30 31 32 33 34 35 INPUTIP3(dBm) Figure37.IIP3Distributions 100TA=–40°CTA=+25°CTA=+85°C 80 PERCENTAGE(%) 60 40 20
0 10 11 12 13 14 15 INPUTP1dB(dBm) Figure38.IP1dBDistributions 100TA=–40°CTA=+25°CTA=+85°C 80 PERCENTAGE(%) 60 40 20
0 –0.2 –0.1
0 0.1 0.2 I/QGAINMISMATCH(dB) Figure39.I/QGainMismatchDistributions 06764-035 PERCENTAGE(%) 06764-034 PERCENTAGE(%) 06764-033 PERCENTAGE(%) ADL5387 06764-036 100 TA=–40°
C TA=+25°
C TA=+85°
C 80 ICHANNEL QCHANNEL 60 40 20
0 55 60 65 70 75 INPUTIP2(dBm) Figure40.IIP2DistributionsforIChannelandQChannel 100TA=–40°CTA=+25°CTA=+85°C 80 60 40 20
0 13.0 13.5 14.0 14.5 15.0 15.5 16.0 NOISEFIGURE(dB) Figure41.NoiseFigureDistributions 100TA=–40°CTA=+25°CTA=+85°C 80 60 40 20
0 –1.0 –0.5
0 0.5 1.0 QUADRATUREPHASEERROR(Degrees) Figure42.I/QQuadratureErrorDistributions 06764-037 06764-038 Rev.C|Page13of27 ADL5387 DISTRIBUTIONSFORfRF=1900MHz 100TA=–40°CTA=+25°CTA=+85°C 80 PERCENTAGE(%) 60 40 20
0 26 27 28 29 30 31 INPUTIP3(dBm) Figure43.IIP3Distributions 100TA=–40°CTA=+25°CTA=+85°C 80 PERCENTAGE(%) 60 40 20
0 10 11 12 13 14 15 INPUTP1dB(dBm) Figure44.IP1dBDistributions 100TA=–40°CTA=+25°CTA=+85°C 80 PERCENTAGE(%) 60 40 20
0 –0.2 –0.1
0 0.1 0.2 I/QGAINMISMATCH(dB) Figure45.I/QGainMismatchDistributions 06764-041 PERCENTAGE(%) 06764-040 PERCENTAGE(%) 06764-039 PERCENTAGE(%) DataSheet 06764-042 100 80 60 40 TA=–40°
C TA=+25°
C 20 TA=+85°
C ICHANNEL QCHANNEL
0 52 54 56 58 60 62 64 66 68 INPUTIP2(dBm) Figure46.IIP2DistributionsforIChannelandQChannel 100TA=–40°CTA=+25°CTA=+85°C 80 60 40 20
0 15.0 15.5 16.0 16.5 17.0 17.5 18.0 NOISEFIGURE(dB) Figure47.NoiseFigureDistributions 100TA=–40°CTA=+25°CTA=+85°C 80 60 40 20
0 –1.0 –0.5
0 0.5 1.0 QUADRATUREPHASEERROR(Degrees) Figure48.I/QQuadratureErrorDistributions 06764-043 06764-044 Rev.C|Page14of27 DataSheet CIRCUITDESCRIPTION TheADL5387canbedividedintofivesections:thelocaloscillator(LO)interface,theRFvoltage-to-current(V-to-I)converter,themixers,thedifferentialemitterfolloweroutputs,andthebiascircuit.AdetailedblockdiagramofthedeviceisshowninFigure49. BIAS IHI RFIPRFIN DIVIDE-BY-TWOQUADRATUREPHASESPLITTER ILOLOIPLOINQHI 06764-045 QLO Figure49.BlockDiagram TheLOinterfacegeneratestwoLOsignalsat90°ofphasedifferencetodrivetwomixersinquadrature.RFsignalsareconvertedintocurrentsbytheV-to-Iconvertersthatfeedintothetwomixers.ThedifferentialIandQoutputsofthemixersarebufferedviaemitterfollowers.Referencecurrentstoeachsectionaregeneratedbythebiascircuit.Adetaileddescriptionofeachsectionfollows. LOINTERFACE TheLOinterfaceconsistsofabufferamplifierfollowedbyafrequencydividerthatgeneratetwocarriersathalftheinputfrequencyandinquadraturewitheachother.Eachcarrieristhenamplifiedandamplitude-limitedtodrivethedoublebalancedmixers. ADL5387 V-TO-ICONVERTER ThedifferentialRFinputsignalisappliedtoaresistivelymonbasestage,whichconvertsthedifferentialinputvoltagetooutputcurrents.Theoutputcurrentsthenmodulatethetwohalf-frequencyLOcarriersinthemixerstage. MIXERS TheADL5387hastwodouble-balancedmixers:oneforthein-phasechannel(Ichannel)andoneforthequadraturechannel(Qchannel).ThesemixersarebasedontheGilbertcelldesignoffourcross-connectedtransistors.Theoutputcurrentsfromthetwomixersaresummedtogetherintheresistiveloadsthatthenfeedintothesubsequentemitterfollowerbuffers. EMITTERFOLLOWERBUFFERS TheoutputemitterfollowersdrivethedifferentialIandQsignalsoff-chip.Theoutputimpedanceissetbyon-chip25Ωseriesresistorsthatyielda50Ωdifferentialoutputimpedanceforeachbasebandport.Thefixedoutputimpedanceformsavoltagedividerwiththeloadimpedancethatreducestheeffectivegain.Forexample,a500Ωdifferentialloadhas1dBlowereffectivegainthanahigh(10kΩ)differentialloadimpedance. BIASCIRCUIT Abandgapreferencecircuitgeneratestheproportional-toabsolutetemperature(PTAT)aswellastemperature-independentreferencecurrentsusedbydifferentsections.ThemixercurrentcanbereducedviaanexternalresistorbetweentheBIASpinandground.WhentheBIASpinisopen,themixerrunsatmaximumcurrentandhencethegreatestdynamicrange.Themixercurrentcanbereducedbyplacingaresistancetoground;therefore,reducingoverallpowerconsumption,noisefigure,andIIP3.TheeffectoneachoftheseparametersisshowninFigure14,Figure17,andFigure18. Rev.C|Page15of27 ADL5387 APPLICATIONSINFORMATION BASICCONNECTIONS Figure51showsthebasicconnectionsschematicfortheADL5387. POWERSUPPLY ThenominalvoltagesupplyfortheADL5387is5VandisappliedtotheVPA,VPB,VPL,andVPXpins.GroundshouldbeconnectedtotheCOM,CML,andCMRFpins.Eachofthesupplypinsshouldbedecoupledusingtwocapacitors;mendedcapacitorvaluesare100pFand0.1µ
F. LOCALOSCILLATOR(LO)INPUT TheLOportisdriveninasingle-endedmanner.TheLOsignalmustbeac-coupledviaa1000pFcapacitordirectlyintoLOIP,andLOINisac-coupledtogroundalsousinga1000pFcapacitor.TheLOportisdesignedforabroadband50Ωmatchandthereforeexhibitsexcellentreturnlossfrom60MHzto4GHz.TheLOreturnlosscanbeseeninFigure24.Figure50showstheLOinputconfiguration. DataSheet LOINPUT 8LOIP1000pF 1000pF 9LOIN 06764-047 Figure50.Single-EndedLODrive ThemendedLOdrivelevelisbetween−6dBmand+6dBm.Foroperationbelow50MHz,aminimumLOdrivelevelof0dBmshouldbeused.TheLOfrequencyattheinputtothedeviceshouldbetwicethatofthedesiredLOfrequencyatthemixercore.TheappliedLOfrequencyrangeisbetween60MHzand4GHz. RFC ETC1-1-13 120nH1000pF1000pF120nH VPOS 0.1µ
F 100pF VPOS0.1µ
F 100pF 242322 CMRFCMRFRFIP1VPA 2120RFINCMRF 19 VPXVPB18 2COM VPB17 100pF VPOS0.1µ
F 3BIAS4VPL ADL5387 QHI16QLO15 5VPL IHI14 6VPLCML7 LOIP8 LOIN9 CML10 CML11 ILO13COM 12 QHIQLOIHIILO 1000pFLO 1000pF Figure51.BasicConnectionsSchematicforADL5387 06764-046 Rev.C|Page16of27 DataSheet RFINPUT TheRFinputshaveadifferentialinputimpedanceofapproximately50Ω.Foroptimumperformance,theRFportshouldbedrivendifferentiallythroughabalun.ThemendedbalunisM/A-COMETC1-1-13.TheRFinputstothedeviceshouldbeac-coupledwith1000pFcapacitors.Ground-referencedchokeinductorsmustalsobeconnectedtoRFIPandRFIN(mendedvalue=120nH,Coilcraft0402CS-R12XJL)forappropriatebiasing.Severalimportantaspectsmustbetakenintoountwhenselectinganappropriatechokeinductorforthisapplication.First,theinductormustbeabletohandletheapproximately40mAofstandingdccurrentbeingdeliveredfromeachoftheRFinputpins(RFIP,RFIN).(Thesuggested0402inductorhasa50mAcurrentrating).ThepurposeofthechokeinductorsistoprovideaverylowresistancedcpathtogroundandhighacimpedanceattheRFfrequencysoasnottoaffecttheRFinputimpedance.AchokeinductorthathasaselfresonantfrequencygreaterthantheRFinputfrequencyensuresthatthechokeisstilllookinginductiveandthereforehasamorepredictableacimpedance(jωL)attheRFfrequency.Figure52showstheRFinputconfiguration. ETC1-1-13RFINPUT 120nH21RFIN 1000pF 1000pF22RFIP 120nH Figure52.RFInput 06764-04806764-050 ADL5387 ThedifferentialRFportreturnlosshasbeencharacterizedasshowninFigure53. –10 –12 –14 –16 S(1,1)(dB) 06764-049 –18 –20 –22 –24 –26 –280 0.20.40.60.81.01.21.41.61.82.0FREQUENCY(GHz) Figure53.DifferentialRFPortReturnLoss BASEBANDOUTPUTS ThebasebandoutputsQHI,QLO,IHI,andILOarefixedimpedanceports.Eachbasebandpairhasa50Ωdifferentialoutputimpedance.Theoutputscanbepresentedwithdifferentialloadsaslowas200Ω(withsomedegradationinlinearityandgain)orhighimpedancedifferentialloads(500Ωorgreaterimpedanceyieldsthesameexcellentlinearity)thatistypicalofanADC.TheTCM9-19:1balunconvertsthedifferentialIFoutputtosingle-ended.Whenloadedwith50Ω,thisbalunpresentsa450Ωloadtothedevice.Thetypicalmaximumlinearvoltageswingfortheseoutputsis2Vp-pdifferential.ThebiaslevelonthesepinsisequaltoVPOS−2.8V.Theoutput3dBbandwidthis240MHz.Figure54showsthebasebandoutputconfiguration. QHI16 QHI QLO15 QLO IHI14 IHI ILO13 ILO Figure54.BasebandOutputConfiguration Rev.C|Page17of27 ADL5387 ERRORVECTORMAGNITUDE(EVM)PERFORMANCE EVMisameasureusedtoquantifytheperformanceofadigitalradiotransmitterorreceiver.Asignalreceivedbyareceiverwouldhaveallconstellationpointsattheideallocations;however,variousimperfectionsintheimplementation(suchascarrierleakage,phasenoise,andquadratureerror)causetheactualconstellationpointstodeviatefromtheideallocations. TheADL5387showsexcellentEVMperformanceforvariousmodulationschemes.Figure55showstypicalEVMperformanceoverinputpowerrangeforapoint-to-pointapplicationwith16QAMmodulationschemesandzero-IFbaseband.ThedifferentialdcoffsetsontheADL5387areintheorderofafewmV.However,accouplingthebasebandoutputswith10µFcapacitorshelpstoeliminatedcoffsetsandenhancesEVMperformance.Witha10MHzBWsignal,10µFaccouplingcapacitorswiththe500Ωdifferentialloadresultsinahigh-passcornerfrequencyof~64Hzwhichabsorbsaninsignificantamountofmodulatedsignalenergyfromthebasebandsignal.Byusingaccouplingcapacitorsatthebasebandoutputs,thedcoffseteffects,whichcanlimitdynamicrangeatlowinputpowerlevels,canbeeliminated.
0 –
5 –10 –15 –20 EVM(dB) –25 –30 –35 –40 –45 06764-051 –50 –70–60–50–40–30–20–10
0 10 INPUTPOWER(dBm) Figure55.RF=140MHz,IF=0Hz,EVMvs.InputPowerfora16QAM10Msym/sSignal(AC-CoupledBasebandOutputs) DataSheet Figure56showstheEVMperformanceoftheADL5387whenac-coupled,withanIEEE802.16eWiMAXsignal.
0 –
5 –10 –15 –20 EVM(dB) –25 –30 –35 –40 –45 06764-052 –50 –50 –40 –30 –20 –10
0 INPUTPOWER(dBm) 10 20 Figure56.RF=750MHz,IF=0Hz,EVMvs.InputPowerfora16QAM10MHzBandwidthMobileWiMAXSignal(AC-CoupledBasebandOutputs) Figure57exhibitsthezeroIFEVMperformanceofaWCDMAsignaloverawideRFinputpowerrange.
0 –
5 –10 –15 EVM(dB) –20 –25 –30 –35 –40 06764-053 –45 –70–60–50–40–30–20–10
0 10 INPUTPOWER(dBm) Figure57.RF=1950MHz,IF=0Hz,EVMvs.InputPowerforaWCDMA(AC-CoupledBasebandOutputs) Rev.C|Page18of27 DataSheet ADL5387 ωIF ωIF ωLSBωLOωUSB COSωLOt –ωIF
0 +ωIF –ωIF
0 +ωIF SINωLOtFigure58.IllustrationoftheImageProblem 0°–90° +90°0°
0 +ωIF
0 +ωIF 06764-054 LOWIFIMAGEREJECTION Theimagerejectionratioistheratiooftheintermediatefrequency(IF)signallevelproducedbythedesiredinputfrequencytothatproducedbytheimagefrequency.Theimagerejectionratioisexpressedindecibels.Appropriateimagerejectioniscriticalbecausetheimagepowercanbemuchhigherthanthatofthedesiredsignal,therebyplaguingthedownconversionprocess.Figure58illustratestheimageproblem.Iftheuppersideband(lowersideband)isthedesiredband,a90°shifttotheQchannel(Ichannel)cancelstheimageatthelowersideband(uppersideband). Figure59showstheexcellentimagerejectioncapabilitiesoftheADL5387forlowIFapplications,suchasCDMA2000.TheADL5387exhibitsimagerejectiongreaterthan45dBoverthebroadfrequencyrangeforanIF=1.23MHz.
0 IMAGEREJECTIONAT1.23MHz(dB) 06764-055 –10 –20 –30 –40 –50 –60 –7050 25045065085010501250145016501850RFINPUTFREQUENCY(MHz) Figure59.ImageRejectionvs.RFInputFrequencyforaCDMA2000Signal,IF=1.23MHz EXAMPLEBASEBANDINTERFACE Inmostdirectconversionreceiverdesigns,itisdesirabletoselectawantedcarrierwithinaspecifiedband.ThedesiredchannelcanbedemodulatedbytuningtheLOtotheappropriatecarrierfrequency.IfthedesiredRFbandcontainsmultiplecarriersofinterest,theadjacentcarrierswouldalsobedownconvertedtoalowerIFfrequency.Theseadjacentcarrierscanbeproblematiciftheyarelargerelativetothewantedcarrierastheycanoverdrivethebasebandsignaldetectioncircuitry.Asaresult,itisoftennecessarytoinsertafiltertoprovidesufficientrejectionoftheadjacentcarriers. ItisnecessarytoconsidertheoverallsourceandloadimpedancepresentedbytheADL5387andADCinputtodesignthework.ThedifferentialbasebandoutputimpedanceoftheADL5387is50Ω.TheADL5387isdesignedtodriveahighimpedanceADCinput.ItmaybedesirabletoterminatetheADCinputdowntolowerimpedancebyusingaterminatingresistor,suchas500Ω.TheterminatingresistorhelpstobetterdefinetheinputimpedanceattheADCinput.Theorderandtypeofworkdependsonthedesiredhighfrequencyrejectionrequired,pass-bandripple,andgroupdelay.Filterdesigntablesprovideoutlinesforvariousfiltertypesandorders,illustratingthenormalizedinductorandcapacitorvaluesfora1Hzcutofffrequencyand1Ωload.Afterscalingthenormalizedprototypeelementvaluesbytheactualdesiredcut-offfrequencyandloadimpedance,theseriesreactanceelementsarehalvedtorealizethefinalbalancedponentvalues. Rev.C|Page19of27 ADL5387 Asanexample,asecond-order,Butterworth,low-passfilterdesignisshowninFigure60wherethedifferentialloadimpedanceis500Ω,andthesourceimpedanceoftheADL5387is50Ω.Thenormalizedseriesinductorvalueforthe10-to-1,load-tosourceimpedanceratiois0.074H,andthenormalizedshuntcapacitoris14.814F.Fora10.9MHzcutofffrequency,thesingle-endedequivalentcircuitconsistsofa0.54µHseriesinductorfollowedbya433pFshuntcapacitor. Thebalancedconfigurationisrealizedasthe0.54µHinductor issplitinhalftorealizeworkshowninFigure60. RS=50Ω LN=0.074H NORMALIZED VS SINGLE-ENDEDCN14.814F RL=500Ω CONFIGURATION RS=0.1RL RS=50Ω VS 0.54µ
H DENORMALIZEDSINGLE-ENDED EQUIVALENT fC=1Hz 433pF RL=500Ω R2S=25ΩVS R2S=25Ω 0.27µ
H BALANCEDCONFIGURATION 0.27µ
H 433pF fC=10.9MHz RL2 = 250Ω R2L=250Ω Figure60.Second-Order,Butterworth,Low-PassFilterDesignExample pletedesignexampleisshowninFigure63.Asixth-orderButterworthdifferentialfilterhavinga1.9MHzcornerfrequencyinterfacestheoutputoftheADL5387tothatofanADCinput.The500ΩloadresistordefinestheinputimpedanceoftheADC.ThefilteradherestotypicaldirectconversionWCDMAapplications,where1.92MHzawayfromthecarrierIFfrequency,1dBofrejectionisdesiredand2.7MHzaway10dBofrejectionisdesired. 06764-056 DELAY(ns) DataSheet Figure61andFigure62showthemeasuredfrequencyresponseandgroupdelayofthefilter. 10
5 MAGNITUDERESPONSE(dB)
0 –
5 –10 –15 06764-157 –200 900800700600500400300200100
0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 FREQUENCY(MHz) Figure61.BasebandFilterResponse 0.20.40.60.81.01.21.41.61.8FREQUENCY(MHz) Figure62.BasebandFilterGroupDelay 06764-158 Rev.C|Page20of27 DataSheet RFC ETC1-1-13 ADL5387 270pF91pF68pF500ΩADCINPUT VPOS 0.1µ
F 100pF VPOS0.1µ
F 100pF 120nH1000pF1000pF120nH CAC10µF27µ
H 27µ
H 10µ
H 242322 CMRFCMRFRFIP1VPA 2120RFINCMRF 19 VPXVPB18 2COM VPB17 100pF 3BIAS4VPL ADL5387 QHI16QLO15 VPOS0.1µ
F CAC10µF 27µ
H 27µ
H 10µ
H 5VPL IHI14 6VPLCML7 LOIP8 LOIN9 CML10 CML11 ILO13COM 12 CAC10µF27µ
H 1000pFLO 1000pF CAC10µF 27µ
H Figure63.SixthOrderLow-PassButterworthBasebandFilterSchematic 27µH27µ
H 10µH10µ
H 270pF91pF68pF500Ω06764-159ADCINPUT Rev.C|Page21of27 ADL5387 CHARACTERIZATIONSETUPS Figure64toFigure66showthegeneralcharacterizationbenchsetupsusedextensivelyfortheADL5387.ThesetupshowninFigure66wasusedtodothebulkofthetestingandusedsinusoidalsignalsonboththeLOandRFinputs.AnautomatedAgilentVEEprogramwasusedtocontroltheequipmentovertheIEEEbus.Thissetupwasusedtomeasuregain,IP1dB,IIP2,IIP3,I/Qgainmatch,andquadratureerror.TheADL5387characterizationboardhada9-to-1impedancetransformeroneachofthedifferentialbasebandportstodothedifferential-to-singleendedconversion. ThetwosetupsshowninFigure64andFigure65wereusedformakingNFmeasurements.Figure64showsthesetupformeasuringNFwithnoblockersignalappliedwhileFigure65wasusedtomeasureNFinthepresenceofablocker.Forbothsetups,thenoisewasmeasuredatabasebandfrequencyof DataSheet 10MHz.Forthecasewhereablockerwasapplied,theoutputblockerwasat15MHzbasebandfrequency.NotethatgreatcaremustbetakenwhenmeasuringNFinthepresenceofablocker.TheRFblockergeneratormustbefilteredtopreventitsnoise(whichincreaseswithincreasinggeneratoroutputpower)fromswampingthenoisecontributionoftheADL5387.Atleast30dBofattentionattheRFandimagefrequenciesisdesired.Forexample,witha2xLOof1848MHzappliedtotheADL5387,theinternal1xLOis924MHz.Toobtaina15MHzoutputblockersignal,theRFblockergeneratorissetto939MHzandthefilterstunedsuchthatthereisatleast30dBofattenuationfromthegeneratoratboththedesiredRFfrequency(934MHz)andtheimageRFfrequency(914MHz).Finally,theblockermustberemovedfromtheoutput(bythe10MHzlow-passfilter)topreventtheblockerfromswampingtheanalyzer. 6dBPADFROMSNSPORT HP6235APOWERSUPPLY SNSCONTROL OUTPUT AGILENTN8974ANOISEFIGUREANALYZER RF GNDADL5387 VPOSCHARBOARDLO R150ΩQI LOW-PASSFILTER INPUT IEEE AGILENT8665BSIGNALGENERATOR IEEE PCCONTROLLER Figure64.GeneralNoiseFigureMeasurementSetup 06764-057 Rev.C|Page22of27 DataSheet ADL5387 06764-058 IEEE R&SSMT03SIGNALGENERATOR HP6235APOWERSUPPLY BAND-PASSTUNABLEFILTER BAND-REJECTTUNABLEFILTER 6dBPAD RF GNDADL5387 VPOSCHARBOARDLO R150ΩQ 6dBPADI LOW-PASSFILTER R&SFSEA30SPECTRUMANALYZER 6dBPAD BAND-PASSCAVITYFILTER HP87405LOWNOISE PREAMP AGILENT8665BSIGNALGENERATOR Figure65.MeasurementSetupforNoiseFigureinthePresenceofaBlocker R&SSMT-06 3dBPADRF 3dBPAD 3dBPADINAGILENT11636A RFAMPLIFIER OUT3dBPAD VPGND RF 6dBPAD R&SSMT-06AGILENTE3631PWERSUPPLY RF GNDADL5387 VPOSCHARBOARDLO Q6dBPADI6dBPAD 6dBPAD AGILENTE8257DSIGNALGENERATOR IEEE RFINPUTIEEE SWITCHMATRIX PCCONTROLLER R&SFSEA30SPECTRUMANALYZER Figure66.GeneralADL5387CharacterizationSetup HP8508AVECTORVOLTMETER IEEE IEEE INPUTCHANNELSAANDBIEEE IEEE 06764-059 Rev.C|Page23of27 ADL5387 EVALUATIONBOARD TheADL5387evaluationboardisavailable.Theboardcanbeusedforsingle-endedordifferentialbasebandanalysis.Thedefaultconfigurationoftheboardisforsingle-endedbasebandanalysis. T1RFC C11C10 R8 L2 L1 R7 DataSheet VPOS R1 C1 C2 R2 R3VPOS C3 C4 242322 CMRFCMRFRFIP1VPA 2120RFINCMRF 19 VPXVPB18 2COM VPB17 3BIAS4VPL ADL5387 QHI16QLO15 5VPL IHI14 6VPLCML7 LOIP8 LOIN9 CML10 CML11 ILO13COM 12 C6R17 LO C5C7T4 R6VPOS C8 C9 R9 R14 R15 C12T2 R16 R10R11 R4 R5 C13 T3 R13 R12 QOUTPUTORQHIQLOIOUTPUTORIHIILO Figure67.EvaluationBoardSchematic 06764-060 Rev.C|Page24of27 DataSheet ADL5387 Table4.EvaluationBoardConfigurationOptions ComponentFunction VPOS,GNDPowerSupplyandGroundVectorPins. R1,R3,R6 PowerSupplyDecoupling.Shortsorpowersupplydecouplingresistors. C1,C2,C3,C4,C8,C9 Thecapacitorsprovidetherequireddccouplingupto2GHz. C5,C6,C7,C10,C11 ACCouplingCapacitors.Thesecapacitorsprovidetherequiredaccouplingfrom50MHzto2GHz.Foroperationdownto30MHz,C10andC11shouldbechangedto0.01µ
F. R4,R5,R9toR16 Single-EndedBasebandOutputPath.Thisisthedefaultconfigurationoftheevaluationboard.R14toR16andR4,R5,andR13arepopulatedforappropriatebaluninterface.R9,R10andR11,R12arenotpopulated.BasebandoutputsaretakenfromQHIandIHI. DefaultConditionNotApplicableR1,R3,R6=0Ω(0805)C2,C4,C8=100pF(0402)C1,C3,C9=0.1µF(0603)C5,C6,C10,C11=1000pF(0402),C7=Open R4,R5,R13toR16=0Ω(0402),R9toR12=Open L1,L2,R7,R8T2,T3 C12,C13R17 T1R2 Theusercanreconfiguretheboardtousefulldifferentialbasebandoutputs.R9toR12provideameanstobypassthe9:1TCM9-1transformertoallowfordifferentialbasebandoutputs.essthedifferentialbasebandsignalsbypopulatingR9toR12with0ΩandnotpopulatingR4,R5,R13toR16.Thiswaythetransformerdoesnotneedtoberemoved.ThebasebandoutputsaretakenfromtheSMAsofQ_HI,Q_LO,I_HI,andI_LO. InputBiasing.Inductanceandresistancesetstheinputbiasingofmonbaseinputstage.Defaultvalueis120nHforoperationabove50MHz.Foroperationdownto30MHz,L1andL2shouldbechangedto680nH. IFOutputInterface.TCM9-1convertsadifferentialhighimpedanceIFoutputtoasingleendedoutput.Whenloadedwith50Ω,thisbalunpresentsa450Ωloadtothedevice.Thecentertapcanbedecoupledthroughacapacitortoground. DecouplingCapacitors.C12andC13arethedecouplingcapacitorsusedtorejectnoiseonthecentertapoftheTCM9-
1. LOInputInterface.TheLOisdrivenasasingle-endedsignal.Although,thereisnoperformancechangeforadifferentialsignaldrive,theoptionisavailablebyplacingatransformer(T4,ETC1-1-13)ontheLOinputpath. RFInputInterface.ETC1-1-13isa1:1RFbalunthatconvertsthesingle-endedRFinputtodifferentialsignal. RBIAS.Optionalbiassettingresistor.SeetheBiasCircuitsectiontoseehowtousethisfeature. L1,L2=120nH(0402)R7,R8=0Ω(0402)T2,T3=TCM9-1,9:1(Mini-Circuits) C12,C13=0.1µF(0402)R17=0Ω(0402) T1=ETC1-1-13,1:1(M/ACOM)R2=Open Rev.C|Page25of27 ADL5387 DataSheet 06764-166 06764-164 Figure68.EvaluationBoardTopLayer Figure70.EvaluationBoardBottomLayer 06764-165 Figure69.EvaluationBoardTopLayerSilkscreen Figure71.EvaluationBoardBottomLayerSilkscreen Rev.C|Page26of27 06764-167 DataSheetOUTLINEDIMENSIONS PIN1INDICATOR 0.800.750.70SEATINGPLANE 4.104.00SQ3.90 TOPVIEW 0.300.250.20 0.50BSC 19 24 18
1 EXPOSEDPAD
6 PIN1INDICATOR 2.402.30SQ2.20 13 0.50 12
7 0.20MIN 0.40 BOTTOMVIEW 0.30 0.05MAX0.02NOM FORPROPERCONNECTIONOFTHEEXPOSEDPAD,REFERTOTHEPINCONFIGURATIONANDFUNCTIONDESCRIPTIONSSECTIONOFTHISDATASHEET. COPLANARITY0.08 0.203REF COMPLIANTTOJEDECSTANDARDSMO-220-WGGD-
8. Figure72.24-LeadLeadFrameChipScalePackage[LFCSP]4mm×4mmBodyand0.75mmPackageHeight(CP-24-14)Dimensionsshowninmillimeters 01-18-2012-
A ADL5387 ORDERINGGUIDE Model1 TemperatureRange ADL5387ACPZ-R2 –40°Cto+85°
C ADL5387ACPZ-R7 –40°Cto+85°
C ADL5387ACPZ-WP–40°Cto+85°
C ADL5387-EVALZ 1Z=RoHSCompliantPart. PackageDescription24-LeadLFCSP24-LeadLFCSP,7”TapeandReel24-LeadLFCSP,WafflePackEvaluationBoard PackageOptionCP-24-14CP-24-14CP-24-14 OrderingQuantity2501,50064 ©2007–2016AnalogDevices,Inc.Allrightsreserved.Trademarksandregisteredtrademarksarethepropertyoftheirrespectiveowners. D06764-0-8/16(C) Rev.C|Page27of27
声明:
该资讯来自于互联网网友发布,如有侵犯您的权益请联系我们。