fficientC2H2/CO2Separation,c2h2是什么气体

气体 1
AJournaloftheGesellschaftDeutscherChemiker AngewandChteemieInternationalEdition eptedArticle Title:MixedMetal-OrganicFrameworkwithMultipleBindingSitesforEfficientC2H2/CO2Separation Authors:BanglinChen,JunkuoGao,XuefengQian,RuibiaoLin,RajamaniKrishna,HuiWu,andWeiZhou ThismanuscripthasbeeneptedafterpeerreviewandappearsasaneptedArticleonlinepriortoediting,proofing,andformalpublicationofthefinalVersionofRecord(VoR).ThisworkiscurrentlycitablebyusingtheDigitalObjectIdentifier(DOI)givenbelow.TheVoRwillbepublishedonlineinEarlyViewassoonaspossibleandmaybedifferenttothiseptedArticleasaresultofediting.ReadersshouldobtaintheVoRfromthejournalwebsiteshownbelowwhenitispublishedtoensureuracyofinformation.TheauthorsareresponsibleforthecontentofthiseptedArticle. Tobecitedas:Angew.Chem.Int.Ed.10.1002/anie.202000323Angew.Chem.10.1002/ange.202000323 LinktoVoR:/10.1002/anie.202000323/10.1002/ange.202000323 AngewandteChemieInternationalEdition 10.1002/anie.202000323 eptedManuscript COMMUNICATION MixedMetal-OrganicFrameworkwithMultipleBindingSitesforEfficientC2H2/CO2Separation JunkuoGao,*XuefengQian,Rui-BiaoLin,*RajamaniKrishna,HuiWu,WeiZhou,*BanglinChen* Abstract:TheC2H2/CO2separationisparticularlychallenging owingtotheirhighsimilarityinphysicalpropertiesandmolecularsizes,butofindustrialsignificance.Hereinwereportamixedanicframework(M’MOF)[Fe(pyz)Ni(CN)4](FeNi-M'MOF,pyz=pyrazine)withmultiplefunctionalsitespactone-dimensionalchannelsof~4.0ÅforchallengingC2H2/CO2separation.ThisMOFshowsnotonlyaremarkablevolumetricC2H2uptakeof133cm3cm−3butalsoanexcellentC2H2/CO2selectivityof24underambientcondition,resultinginthesecondhighestC2H2-capturedamountof4.54molL−1thatoutperformsmostpreviousbenchmarkmaterials.Theseparationperformanceofthismaterialhasbeenvalidatedbydynamicbreakthroughandneutrondiffractionexperiments,whichisdrivenbyπ-πstackingandmultipleintermolecularinteractionsbetweenC2H2moleculesandthebindingsitesofFeNi-M'MOF.Besides,thismaterialcanbefacilelysynthesizedbymixingmethodatroomtemperatureandiswaterstable,jointlyhighlightingFeNi-M'MOFasapromisingmaterialforC2H2/CO2separation. anicframeworks(MOFs)haveemergedasverypromisingporousmaterialsforadsorptivegasseparationbecausetheyintegratethemeritsoftunableporesizesandfunctionalporesurfacethatcanrealizenotonlymolecularsievingeffectbutalsopreferentialgasbinding.[1]PlentyofMOFshavebeenexploredforsimplifyingvariousgasseparationandpurificationschemes,rangingfrommatureonessuchascarbondioxidecapture(CO2)frommethaneandnitrogentomorechallengingolefin/paraffinandalkyne/alkeneseparations.[2]ForC2H2andCO2gasmolecules,theirveryhighsimilarityinphysicalproperties(differinboilingpointby~3%and~6K),andidenticalmolecularshapes/sizes(3.3×3.3×5.7Å3forC2H2,3.2×3.3×5.4Å3forCO2)withbothicdiametersof∼3.3Å,makeitverydifficultandchallengingtorealizeefficientporousmaterialsfor [*]Prof.J.Gao,Mr.X.QianInstituteofFunctionalPorousMaterials,TheKeylaboratoryofAdvancedTextileMaterialsandManufacturingTechnologyofMinistryofEducation,SchoolofMaterialsScienceandEngineeringZhejiangSci-TechUniversityHangzhou310018(China)Email:jkgao@Prof.J.Gao,Dr.R.-
B.Lin,Prof.B.ChenDepartmentofChemistryUniversityofTexasatSanAntonioOneUTSACircle,SanAntonio,TX78249-0698(USA)Email:ruibiao.lin@utsa.edu;banglin.chen@utsa.eduDr.R.KrishnaVan’tHoffInstituteofMolecularSciencesUniversityofAmsterdamSciencePark904,1098XHAmsterdam(TheNetherlands)Dr.H.Wu,Dr.W.ZhouNISTCenterforNeutronResearchNationalInstituteofStandardsandTechnologyGaithersburg,MD20899-6102(USA)Email:wzhou@nist.gov Supportinginformationforthisarticleisgivenviaalinkattheendofthedocument. C2H2/CO2separationunderambientconditions.[3]AfewultramicroporousMOFsfeaturingbareoxygenorfluorinebasesiteshavebeendevelopedtopreferentiallybindC2H2moleculesthroughH-bondinginteractionsorbindCO2moleculesthroughelectrostaticinteractions,showinghighC2H2/CO2selectivitybutlowC2H2uptake.[4]AnotherapproachistoincorporatestrongadsorptionbindingsitesmainlyopenmetalsitesintoMOFswithlargeporevolumestoboosttheuptakecapacityofthepreferredgasmolecules.[5]UTSA-74representsauniqueexamplewithopenmetalcentersoftwoessiblesites,whichcanbindtwoC2H2butoneCO2molecules,differingfromitsisomerMOF-74whichadsorbssimilaramountsofC2H2andCO2underthesamecondition.[5c]Thoughprogresseshavebeenmadeoverthepastseveralyears,theuptakecapacityversusselectivitytrade-offstillposesadauntingchallengeforaddressingC2H2/CO2separation.[6] ThevastdatabaseofreportedMOFstructuresparativeanalysestotargetpotentialcandidateswithdualfunctionalities,featuringmoderateporevolumesandessiblefunctionalsites,torealizebothhighgasuptakeandseparationselectivities.Amongplentifulligands,cyanideisashortandhighlybasicligandthatisfeasibletoconstructrobustMOFswithmodestporeaperturesize,suchasPrussianblueandpounds.[7]ForthoseMOFswithmetalloligands,theopenmetalsitesonligandsareessibleforgasmolecules,whereasexpectednarrowporestructuresoriginatingpactligandsenforceadditionalmultipleintermolecularinteractionstoform,asdemonstratedbyaseriesofmixedanicframeworks(M’MOFs).[8]Inthisregard,aHofmann-typeMOF[Fe(pyz)Ni(CN)4](FeNi-M'MOF,pyz=pyrazine)discoveredin2001,showingopennickelsitesandpolarizedsurfacesaswellpactporechannelsof~4.0Å,isparticularlyinteresting.[9]Thehighdensityoffunctionalsitesandultramicroporewouldcollaborativelyenforcegasseparationwithhighgasuptakeandseparationselectivities.Hereinweinvestigatethemixediron/nickelMOFFeNiM'MOFforpotentialC2H2/CO2separation.InthisMOF,C2H2moleculesarefoundtopreferentiallybindontoanicmoietiesandopenNisitesthroughπ-πstackingandmultipleintermolecularinteractions,respectively,whereasCO2moleculesmainlydistributeontheopenNisitesthroughrelativelyweakinteractions.Inthiscontext,FeNi-M'MOFshowsaveryhighC2H2/CO2selectivityof24thatissuperiortotheperformingMOFswhileretainingaremarkableC2H2uptakecapacityof133cm3cm−3,andthusanexcellentC2H2-capturedcapacityof4.54molL−1at298Kand1barfor50:50C2H2/CO2separation,whichisclosetothatofthebenchmarkUTSA-74andexceedsthoseofotherout-performingMOFs.[5c] FeNi-M'MOFisapillared-layerM’MOF,inwhichtheFe[Ni(CN)4]layerisconnectedbythepyzpillars.TheNiatomsshowsquare-planarcoordinationgeometrywhileFeatomsareoctahedrallycoordinated.TheNiatomsarecoordinatedbycarbonatomsoffourdifferentcyangroups,whereastheFeatomsarefullycoordinatedbynitrogenatomsfromfourdifferentcyangroupsandtwopyzlinkers.Fe[Ni(CN)4]layersarethenconnectedbypyzlinkersintoaworkwithone-dimensionalchannelsofabout4.15×4.27or3.94×4.58Å
2. Thisarticleisprotectedbycopyright.Allrightsreserved. AngewandteChemieInternationalEdition 10.1002/anie.202000323 COMMUNICATION TheopenmetalsitesdensityofFeNi-M'MOFisabout9.2mmolcm−3,whichishigherthanthatofmostMOFs,asshowninTableS2. Figure1.ThecrystalstructureofFeNi-M'MOFviewedalongthea/baxis.Fe,Ni,
C,N,HinFeNi-M'MOFarerepresentedbyorange,green,gray,blueandwhite,respectively. FeNi-M'MOFwassynthesizedatroomtemperatureinwaterandmethanol.[10]ByaddingthesolutionofK2[Ni(CN)4]intothemixedmethanolandwatersolutionofFe2+andpyz,theFeNi- M'MOFmicrocrystallinepowderswereobtainedafterstirringfor30minutes.ThepowderX-raydiffraction(PXRD)ofproductsindicatedthatthoseproductshaveagoodcrystallinityandmatchwellwiththesimulatedXRDpattern,indicatingthepurityofFeNiM'MOF.TheresultantFeNi-M'MOFwasfurthervalidatedbyelementalanalysis(EA),thermogravimetryanalysis(TGA),energydispersivespectroscopy(EDS)andX-rayphotoelectronspectroscopy(XPS)analysis(seesupportinginformation).ThisMOFalsoexhibitsanexcellentwaterstabilityasshowninFigureS2.Aftersoakinginwaterfor30days,thecrystallinityofFeNiM'MOFisstillretained.TheTGAcurveindicatedthatFeNiM'MOFexhibitsaconsiderablethermalstabilityupto200oC(FigureS4).ThethermalstabilityofFeNi-M'MOFwasalsoconfirmedbyvariabletemperaturePXRD(FigureS5),indicatingthatFeNi-M'MOFcanmaintainitscrystallinestructureuntil~200oC.Thefastandfacilesynthesismethod,excellentwaterstabilityandgoodthermalstabilityindicateFeNi-M'MOFisapromisingseparationmaterialforscale-upsynthesis. TheBrunauer-Emmett-Teller(BET)surfaceareaofFeNiM'MOFwasmeasuredtobe383m2g−1byN2sorptionexperimentat77KasshowninFigure2a.Theexperimentaltotalporevolumeis~0.25cm3g−1,andslightlysmallerthanthetheoreticalonecalculatedfromthecrystalstructure(0.30cm3g−1),whichcanbeattributedtotheinsufficientfillingofN2moleculesintheultramicroporousporechannels. eptedManuscript Figure2.(a)N2sorptionisothermsforFeNi-M'MOFat77K.(b)C2H2andCO2sorptionisothermsforFeNi-M'MOFat298K.(c)ComparisonofIASTselectivitiesforequimolarC2H2/CO2mixturesinFeNi-M'MOF,FePt-M'MOFandothermaterialsintherangeof0-1barat298K.(d)ComparisonofC2H2/CO2adsorptionselectivityandvolumetricC2H2uptakeat1barinFeNi-M'MOF,FePt-M'MOFandotherporousmaterials. Thisarticleisprotectedbycopyright.Allrightsreserved. eptedManuscript AngewandteChemieInternationalEdition 10.1002/anie.202000323 COMMUNICATION TheC2H2andCO2gasadsorptionisothermsofFeNi-M'MOFweremeasuredat273Kand298K.AsshowninFigure2b,thevolumetricC2H2uptakecapacityofFeNi-M'MOFis133cm3cm−3(4.29mmolg−1)at1barand298K,whichishigherthanthoseofmanyotherMOFs,suchasDICRO-4-Ni-i(52cm3cm−3),[4e]ZJU60a(96cm3cm−3),[11]Cu[Ni(pdt)2](108cm3cm−3),[6a]SNNU-45(113cm3cm−3),[6b]TIFSIX-2-Cu-i(116cm3cm−3),[4f]PCP-33(128cm3cm−3),[12]parabletothoseofUTSA-74(144cm3cm−3),[5c]FJU-90a(146cm3cm−3),[6c]andZn-MOF-74(150cm3cm−3)[13].TheCO2uptakeofFeNi-M'MOFis84cm3cm−3(2.72mmolg−1)at1barand298K.At1barand273K,C2H2andCO2uptakesofFeNi-M'MOFareupto145and102cm3cm−3respectively,asshowninFigureS8.Interestingly,thePtanalogue[Fe(pyz)Pt(CN)4](FePt-M'MOFFigureS10-12)showsmuchloweruptakecapacitiesforC2H2andCO2(100and105cm3cm−3,respectively),indicatingthepotentialbindingcontributionofNisitesinthistypeofMOFforC2H2molecules.Toevaluatetheseparationperformanceofthismaterial,idealadsorbedsolutiontheory(IAST)wasemployedtocalculatetheadsorptionselectivity.AsshowninFigure2c,at100kPaand298K,theC2H2/CO2(50/50)selectivityofFeNi-M'MOFis24.TheselectivityofFeNi-M'MOFishigherthanthoseofmostMOFs,suchasZn-MOF-74(1.92),[5c]FJU-90a(4.3),[6c]UTSA-74a(8.2),[5c]JCM-1(13.4),[4b]DICRO-4-Ni-i(13.9),[4e]andbenchmarkHOF-3a(21).[14]Itshouldbenotedthatboththeuptakecapacityandseparationselectivitycansignificantlyaffectthepracticalperformanceofanadsorbent.HOF-3ahasahighselectivity,butthelowuptakeofC2H2reduceditsseparationperformance.Incontrast,FeNi-M'MOFcanaddresssuchtrade-offbetweentheadsorptioncapacityandselectivityasshowninFigure2d.ThehighselectivityandhighC2H2adsorptioncapacityofFeNiM'MOFjointlyrevealitsbrightseparationpotentialforC2H2/CO2. TransientbreakthroughsimulationswereconductedtodemonstratetheC2H2/CO2separationperformanceofFeNiM'MOF.ThesimulationsinFigure3ademonstratetheFeNiM'MOFisofpotentialuseforthischallengingseparationofC2H2/CO2mixtures.TheC2H2/CO2mixtures(50/50)wereusedasfeedstomimictheindustrialprocessconditions.PureCO2firstelutedthroughthebed,wheretheCO2purityis99.95%,andfollowedbythebreakthroughofC2H2afteracertaintimeτbreakthatFeNi-M'MOFhasbeensaturatedbyC2H2.TheC2H2capturedamountofFeNi-M'MOFis4.54molL−1basedonthesimulatedcolumnbreakthrough,whichisclosetothatofthebenchmarkUTSA-74(4.86molL−1)[5c]andhigherthanthoseofmostout-performingMOFs,suchasZn-MOF-74(4.06molL−1),[5c]FJU-90a(4.16molL−1),[6c]PCP-33(4.16molL−1)[12].ordingly,FeNi-M'MOFshowsnotonlyahighC2H2/CO2selectivityandhighC2H2uptakebutalsohighC2H2-capturedcapabilityfromgasmixture,enablingthismaterialahugeC2H2/CO2separationpotential.Basedonexperimentalbreakthroughstudies,wefurtherevaluatedtheperformanceofFeNi-M'MOFinnearpracticalseparationprocessesforC2H2/CO2mixture(50/50v/v)asshowninFigure3b.Indeed,FeNi-M'MOFexhibitsexcellentC2H2/CO2mixturesseparationperformanceat298K.CO2wasfirstelutedthroughtheadsorptionbedwithoutanydetectableC2H2,whereasthelatterwasretainedintheMOFcolumnforaremarkableperiodpriortosaturatetheMOF.TheretainedtimeofpureCO2andC2H2forC2H2/CO2(50/50v/v)mixtureonFeNi-M'MOFareupto24and 40minrespectively.ordingly,thecaptured-C2H2wascalculatedtobe4.10molL−1withaseparationfactorof1.7. Figure3.(a)TransientbreakthroughsimulationsforseparationofequimolarC2H2/CO2mixtureusingFeNi-M'MOFat298K,withapartialpressureof50kPaforeach.(b)ExperimentbreakthroughcurvesforequimolarC2H2/CO2mixtureinapackedcolumnwithFeNi-M'MOFat298Kand1bar. Theisostericheatofadsorption(Qst)hasbeenusedtoevaluatethestrengthofinteractionbetweentheadsorbentandtheadsorbate,whichiscalculated(FigureS13)fromtheadsorptionisothermsat273and298K.TheQstvaluesare27~32.8and~24.5kJmol−1ofFeNi-M'MOFforC2H2andCO2,respectively.TheQstvalueofC2H2inFeNi-M'MOFislowerthanthoseofotherMOFssuchasHKUST-1(39kJmol−1),[15]FeMOF74(47.5kJmol−1),[16]andSIFSIX-2-Cu-i(41.9kJmol−1),[1e]andparabletothatofUTSA-74(31kJmol−1).[5c]ThesedataindicateFeNi-M'MOFhasalowerregenerationenergyforC2H2production,whichwouldbebeneficialforpracticalapplication. TounderstandtheseparationperformanceofFeNi-M'MOF,theadsorptionmodesofC2H2inFeNi-M'MOFwereestablishedbyDFT-Dcalculations(FigureS14).ThemodelingstructuresindicatedthattherearetwobindingsitesforC2H2inFeNi-M'MOF.SiteⅠlocatedinthemiddleoftwoadjacentpyzrings,whereC2H2wasadsorbedthroughtheπ-πinteractionsbetweenC2H2andpyzrings(FigureS14a).TheC2H2staticbindingenergyinsiteⅠisupto41.4kJmol−
1.SiteⅡlocatedinthemiddleoftwoadjacentNiopenmetalsites,whereC2H2moleculewasadsorbedthroughtheinteractionsbetweenC≡CandNiopenmetalsitesandwasperpendiculartocaxis.TheC2H2staticbindingenergyinthissiteis29.9kJmol−1,whichissmallerthanthatofsiteⅠ(FigureS14b). Furthervisualizationofthesehost-guestinteractionswascarriedoutthroughhigh-resolutionneutronpowderdiffractionexperiments.ThecrystalstructureunderlowC2D2loadingwasmeasuredfirst(Figure4a).Asexpected,C2D2moleculespreferentiallydistributeonsiteⅠ.C2D2moleculeswereidentifiedbetweenthetwopyzringsthroughπ-πstacking(3.552Å).TheC2D2moleculesshowatitlingangleof27.4ºfromthe[001]direction(crystallographiccaxis)(FigureS15a).Inadditional,multipleintermolecularinteractionswerealsoobservedbetweenC2D2andFeNi-M'MOF(Dᵟ+···Nᵟ-:2.977Å,Cᵟ-···Nᵟ-:3.808Å,Figure4candFigureS15b).Incontrast,thepreferentialCO2bindingsiteislocatedattheopenNisite(Figure4b).TheelectronegativeOᵟ-atomsofCO2interactwiththepositiveopenmetalsiteNiᵟ+.However,thedistanceacrossthechannelisinsufficientforfavorableNiᵟ+···Oᵟ-=C=Oᵟ-···Niᵟ+interactionstoforminthestructure.Thus,CO2moleculeswereadsorbednearthecenterofthechannelandparalleltothechannel.Oᵟ-atomof Thisarticleisprotectedbycopyright.Allrightsreserved. eptedManuscript AngewandteChemieInternationalEdition 10.1002/anie.202000323 COMMUNICATION CO2insertsbetweentheadjacenttwoNiᵟ+atomsfromdifferentlayersandthedistanceofOᵟ-···Niᵟ+are3.746and3.325Å,respectively(Figure4d).Thistypeinteractionisrelativelyweak,beingconsistentwiththegentleadsorptionisothermandlowQstofCO2inFeNi-M'MOF.ThemultiplebindingsitesofFeNiM'MOFforgasmoleculesanditsdifferentbindingmodestowardC2H2andCO2,enableFeNi-M'MOFtoselectiveadsorptionC2H2fromCO2withbothhighC2H2uptakeandremarkableC2H2/CO2selectivity. Figure4.NeutrondiffractioncrystalstructureofFeNi-M'MOF⊃C2D2(a)andFeNi-M'MOF⊃CO2(b),viewedfroma/baxis.AdsorptionbindingsitesofC2D2(c)andCO2(d)forFeNi-M'MOF.Fe,Ni,
C,N,
O,HinFeNi-M'MOFandCO2arerepresentedbyorange,green,gray,blue,red,andwhite,respectively;CandDinC2D2arerepresentedbyorangeandwhite,respectively.ThelabelleddistanceismeasuredinÅ. Insummary,thehighlyselectiveC2H2/CO2separationhasbeenessfullyrealizedbyamixediron/nickelMOFFeNiM'MOFfrommetalloligandapproach.ThestructuralfeaturesofcyanonickelateandoptimalporechannelsinthisMOFallowC2H2moleculestointeractonmultiplebindingsites,withbothveryhighC2H2uptakeandC2H2/CO2selectivityinvolumetricratio.Theso-calleddualfunctionalityinthismaterialenablethisMOFstoserveasoneofthebestmaterialsforC2H2/CO2separationintermsofC2H2-capturedcapability.ThisworkalsoillustratesanoutstandingexampletofurtherrevealthehugeseparationpotentialofMOFadsorbents,especiallyforchallenginggasseparationandpurification.Theactiveongoingresearchaffordstremendousopportunitiesforenergy-efficientseparation. Acknowledgements ThisworkwassupportedbytheZhejiangProvincialNaturalScienceFoundationofChina(LY20E020001),NationalNaturalScienceFoundationofChina(51602301and51672251)andWelchFoundation(AX-1730).J.G.acknowledgestheFundamentalResearchFundsofZhejiangSci-TechUniversity(2019Q007). Conflictofinterest Theauthorsdeclarenoconflictofinterest. Keywords:anicframeworks•gasseparation• acetylene•Hofmann•openmetalsites __________________________________________________ [1]a)
H.Li,
L.Li,
R.-B.Lin,
W.Zhou,
S.Xiang,
B.Chen,
Z.Zhang,EnergyChem2019,1,100006;b)
M.Ding,
R.W.Flaig,
H.-L.Jiang,
O.M.Yaghi,Chem.Soc.Rev.2019,48,2783-2828;c)
R.-B.Lin,
L.Li,
H.-L.Zhou,
H.Wu,
C.He,
S.Li,
R.Krishna,
J.Li,
W.Zhou,
B.Chen,Nat.Mater.2018,17,1128-1133;d)
M.K.Taylor,
T.Runčevski,
J.Oktawiec,
J.E.Bachman,
R.L.Siegelman,
H.Jiang,
J.A.Mason,
J.D.Tarver,
J.R.Long,
J.Am.Chem.Soc.2018,140,10324-10331;e)
X.Cui,
K.Chen,
H.Xing,
Q.Yang,
R.Krishna,
Z.Bao,
H.Wu,
W.Zhou,
X.Dong,
Y.Han,
B.Li,
Q.Ren,
M.J.Zaworotko,
B.Chen,Science2016,353,141-144;f)
A.Cadiau,
K.Adil,
P.M.Bhatt,
Y.Belmabkhout,
M.Eddaoudi,Science2016,353,137-140;g)
R.-B.Lin,
S.Xiang,
W.Zhou,
B.Chen,Chem2019,DOI:10.1016/j.chempr.2019.1010.1012. [2]a)
K.-J.Chen,
D.G.Madden,
S.Mukherjee,
T.Pham,
K.A.Forrest,
A.Kumar,
B.Space,
J.Kong,
Q.-Y.Zhang,
M.J.Zaworotko,Science2019,366,241-246;b)
Y.Liu,
Z.Chen,
G.Liu,
Y.Belmabkhout,
K.Adil,
M.Eddaoudi,
W.Koros,Adv.Mater.2019,31,1807513;c)
W.G.Cui,
T.L.Hu,
X.H.Bu,Adv.Mater.2019,1806445;d)
R.L.Siegelman,
P.J.Milner,
E.J.Kim,
S.C.Weston,
J.R.Long,EnergyEnviron.Sci.2019,12,2161-2173;e)
L.Li,
R.-B.Lin,
R.Krishna,
H.Li,
S.Xiang,
H.Wu,
J.Li,
W.Zhou,
B.Chen,Science2018,362,443-446;f)
P.-Q.Liao,
N.-Y.Huang,
W.-X.Zhang,
J.-P.Zhang,
X.-M.Chen,Science2017,356,11931196;g)
S.Yang,
A.J.Ramirez-Cuesta,
R.Newby,
V.Garcia-Sakai,
P.Manuel,
S.K.Callear,
S.I.Campbell,
C.C.Tang,
M.Schröder,Nat.Chem.2014,7,121-129;h)
M.L.Aubrey,
M.T.Kapelewski,
J.F.Melville,
J.Oktawiec,
D.Presti,
L.Gagliardi,
J.R.Long,
J.Am.Chem.Soc.2019,141,5005-5013. [3]
C.R.Reid,
K.M.Thomas,
J.Phys.Chem.B2001,105,10619-10629.[4]a)
H.Yang,
T.X.Trieu,
X.Zhao,
Y.Wang,
Y.Wang,
P.Feng,
X.Bu, Angew.Chem.Int.Ed.2019,58,11757-11762;b)
J.Lee,
C.Y.Chuah,
J.Kim,
Y.Kim,
N.Ko,
Y.Seo,
K.Kim,
T.H.Bae,
E.Lee,Angew.Chem.Int.Ed.2018,57,7869-7873;c)
R.-B.Lin,
L.Li,
H.Wu,
H.Arman,
B.Li,
R.-G.Lin,
W.Zhou,
B.Chen,
J.Am.Chem.Soc.2017,139,8022-8028;d)
M.Jiang,
X.Cui,
L.Yang,
Q.Yang,
Z.Zhang,
Y.Yang,
H.Xing,Chem.Eng.J.2018,352,803-810;e)
H.S.Scott,
M.Shivanna,
A.Bajpai,
D.G.Madden,
K.-J.Chen,
T.Pham,
K.A.Forrest,
A.Hogan,
B.Space,
J.J.PerryIv,
M.J.Zaworotko,ACSAppl.Mater.Interfaces2017,9,3339533400;f)
K.-J.Chen,
H.S.Scott,
D.G.Madden,
T.Pham,
A.Kumar,
A.Bajpai,
M.Lusi,
K.A.Forrest,
B.Space,
J.J.PerryIV,MichaelJ.Zaworotko,Chem2016,1,753-765;g)
O.T.Qazvini,
R.Babarao,
Z.-L.Shi,
Y.-B.Zhang,
S.G.Telfer,
J.Am.Chem.Soc.2019,141,5014-5020.[5]a)
H.Zeng,
M.Xie,
Y.-L.Huang,
Y.Zhao,
X.-J.Xie,
J.-P.Bai,
M.-Y.Wan,
R.Krishna,
W.Lu,
D.Li,Angew.Chem.Int.Ed.2019,58,8515-8519;b)
J.Duan,
M.Higuchi,
J.Zheng,
S.-I.Noro,
I.-Y.Chang,
K.Hyeon-Deuk,
S.Mathew,
S.Kusaka,
E.Sivaniah,
R.Matsuda,
J.Am.Chem.Soc.2017,139,11576-11583;c)
F.Luo,
C.Yan,
L.Dang,
R.Krishna,
W.Zhou,
H.Wu,
X.Dong,
Y.Han,
T.-L.Hu,
M.O’Keeffe,
L.Wang,
M.Luo,
R.-B.Lin,
B.Chen,
J.Am.Chem.Soc.2016,138,5678-5684.[6]a)
Y.-L.Peng,
T.Pham,
P.Li,
T.Wang,
Y.Chen,
K.-J.Chen,
K.A.Forrest,
B.Space,
P.Cheng,
M.J.Zaworotko,
Z.Zhang,Angew.Chem.Int.Ed.2018,57,10971-10975;b)
Y.-P.Li,
Y.Wang,
Y.-Y.Xue,
H.-P.Li,
Q.-G.Zhai,
S.-N.Li,
Y.-C.Jiang,
M.-C.Hu,
X.Bu,Angew.Chem.Int.Ed.2019,58,13590-13595;c)
Y.Ye,
Z.Ma,
R.-B.Lin,
R.Krishna,
W.Zhou,
Q.Lin,
Z.Zhang,
S.Xiang,
B.Chen,
J.Am.Chem.Soc.2019,141,41304136.[7]a)
D.Aguila,
Y.Prado,
E.S.Koumousi,
C.Mathoniere,
R.Clérac,Chem.Soc.Rev.2016,45,203-224;b)
M.B.Zakaria,
T.Chikyow,Coord.Chem.Rev.2017,352,328-345;c)
K.Otsubo,
T.Haraguchi,
H.Kitagawa,Coord.Chem.Rev.2017,346,123-138;d)
S.Sakaida,
K.Otsubo,
O.Sakata,
C.Song,
A.Fujiwara,
M.Takata,
H.Kitagawa,Nat.Chem.2016,8,377-383;e)
M.M.Deshmukh,
M.Ohba,
S.Kitagawa,
S.Sakaki,
J.Am.Chem.Soc.2013,135,4840-4849;f)
J.T.Culp,
M.R.Smith,
E.Bittner,
B.Bockrath,
J.Am.Chem.Soc.2008,130,12427-12434.[8]a)
M.C.Das,
S.Xiang,
Z.Zhang,
B.Chen,Angew.Chem.Int.Ed.2011,50,10510-10520;b)
S.-C.Xiang,
Z.Zhang,
C.-G.Zhao,
K.Hong,
X.Zhao,
D.-R.Ding,
M.-H.Xie,
C.-D.Wu,
M.C.Das,
R.Gill,
K.Tomas,
B.Chen,Nat.Commun.2011,2,204.[9]
V.Niel,
J.M.Martinez-Agudo,
M.C.Muñoz,
A.B.Gaspar,
J.A.Real,.Chem.2001,40,3838-3839.[10]
J.Gao,
J.Cong,
Y.Wu,
L.Sun,
J.Yao,
B.Chen,ACSAppl.EnergyMater.2018,1,5140-5144.[11]
X.Duan,
Q.Zhang,
J.Cai,
Y.Yang,
Y.Cui,
Y.He,
C.Wu,
R.Krishna,
B.Chen,
G.Qian,
J.Mater.Chem.A2014,2,2628-2633.[12]
J.Duan,
W.Jin,
R.Krishna,.Chem.2015,54,4279-4284. Thisarticleisprotectedbycopyright.Allrightsreserved. AngewandteChemieInternationalEdition COMMUNICATION [13]
S.Xiang,
W.Zhou,
Z.Zhang,
M.A.Green,
Y.Liu,
B.Chen,Angew.Chem.Int.Ed.2010,49,4615-4618. [14]
P.Li,
Y.He,
Y.Zhao,
L.Weng,
H.Wang,
R.Krishna,
H.Wu,
W.Zhou,
M.O'Keeffe,
Y.Han,
B.Chen,Angew.Chem.Int.Ed.2015,54,574-577. [15]
Y.He,
R.Krishna,
B.Chen,EnergyEnviron.Sci.2012,5,9107-9120.[16]
E.D.Bloch,
W.L.Queen,
R.Krishna,
J.M.Zadrozny,
C.M.Brown,
J. R.Long,Science2012,335,1606-1610. 10.1002/anie.202000323 eptedManuscript Thisarticleisprotectedbycopyright.Allrightsreserved. AngewandteChemieInternationalEdition COMMUNICATION EntryfortheTableofContents COMMUNICATION FeNi-M'MOFwitha microporousone- dimensionalchannel decorated with multiplebindingsites showsahighC2H2 uptake(133cm3 cm−3)andhigh C2H2/CO2selectivity (24). 10.1002/anie.202000323
J.Gao*,
X.Qian,
R.-B.Lin*,
R.Krishna,
H.Wu,
W.Zhou*,
B.Chen* PageNo.–PageNo. MixedMetal-Organic Framework with MultipleBindingSites forEfficientC2H2/CO2 Separation eptedManuscript Thisarticleisprotectedbycopyright.Allrightsreserved.

标签: #软件 #cable #concern #职位 #courage #cda #linux #campus